

Fronius IG Plus 30 V / 35 V / 50 V / 70 V 100 V / 120 V / 150 V

Inverter for grid-connected photovoltaic systems

POWERING YOUR FUTURE

Please also note the safety rules to ensure greater safety when using the product. Careful handling of the product will repay you with years of safe and reliable operation. These are essential prerequisites for excellent results.

Contents

Safety rules
Safety Rules Explanation
General
Utilization in Accordance with "Intended Purpose" 10
Environmental Conditions
Qualified Service Engineers
Safety Measures at the Installation Location 12
Data Regarding Noise Emission Values 1'
EMC device classifications
EMC Measures 1'
Grid Connection
Electrical Installations 12
Protective Measures against ESD 12
Safety Measures in Normal Operation 12
Safety Symbols
Disposal 12
Backup
Copyright

General Information

Protection of Persons and Equipment	17
Safety	17
Protection of Persons and Equipment	17
Galvanic isolation	17
Monitoring the Grid	17
Warning notices affixed to the device	17
Warning notice on the wall bracket	19
The Fronius IG Plus Unit in the PV System	20
General	20
Tasks	20
Converting DC to AC Current	20
Fully Automatic Operational Management	20
Display function and data communication	20
System Upgrade	20
Forced Ventilation	21
100 kohm Grounding Kit Option	21
Power derating	21

Installation and Startup

22	
20	

25
∠5 25
26
26
26
27
28
28
30
30
30
30

Fronius IG Plus Installation	31	
Attaching the wall bracket		
Lifting the Fronius IG Plus	31	
Fronius IG Plus installation	32	
Connecting the Fronius IG Plus to the Public Grid (AC)	34	
Monitoring the Grid	34	
Installations with Several Inverters	34	
AC-Side Terminals	34	
Grid Neutral Conductor	35	
Connecting Aluminum Cables	35	
Cross Section of AC Wires	35	
Safety	35	
Connecting the Fronius IG Plus to the public grid (AC)	35	
Maximum AC-side overcurrent protection	36	
Connecting Solar Module Strings to the Fronius IG Plus (DC)	37	
General Information about Solar Modules	37	
Safety	37	
DC-Side Terminals	38	
Connecting aluminum cables (DC)	38	
Polarity Reversal of Solar Module Strings	38	
Overview	39	
Ungrounded System: Connecting Solar Module Strings	40	
Wire Cross Section of Solar Module Strings	40	
Ungrounded system: Connecting solar module strings	40	
Selecting String Fuses	42	
Inserting String Fuses	43	
Criteria for the Proper Selection of String Fuses	44	
General	44	
Criteria for the Proper Selection of String Fuses	44	
Effects of Using Underrated Fuses	44	
Fuse Recommendations	44	
Application Example	44	
Fuses	45	
Ungrounded System: Connecting Solar Module Strings with a Cable Cross Section > 16 mm ²	46	
General	46	
Additional components required	46	
Ungrounded system: Connecting solar module strings with a cable cross section > 16 mm ²	46	
Solar Module Ground at Negative Pole: Connecting Solar Module Strings	50	
General	50	
Wire Cross Section of Solar Module Strings	50	
Solar module ground at negative pole: Connecting solar module strings	50	
Selecting String Fuses	52	
Inserting String Fuses	53	
Criteria for the Proper Selection of String Fuses	54	
General	54	
Criteria for the Proper Selection of String Fuses	54	
Effects of Using Underrated Fuses	54	
Fuse Recommendations	54	
Application Example	54	
Fuses	55	
Solar Module Ground at Negative Pole: Connecting Solar Module Strings with a Cable Cross Section >	56	
16 mm ²	00	
General	56	
Additional components required	56	
Solar module ground at negative pole: Connecting solar module strings with a cable cross section >	56	
16 mm ²		
Solar Module Ground at Negative Pole for Fronius IG Plus	60	

	••
Selecting String Fuses	
Inserting String Fuses	
Criteria for the Proper Selection of String Fuses	
General	••
Criteria for the Proper Selection of String Fuses	
Effects of Using Underrated Fuses	
Fuse Recommendations	
Application Example	
Fuses	
Solar Module Ground at Positive Pole: Connecting Solar Module Strings with a Cable Cross Section > 1	6
nm²	••
General	••
Additional components required	••
Solar module ground at positive pole: Connecting solar module strings with a cable cross section > 1 mm ²	6
Solar Module Ground at Positive Pole for Fronius IG Plus	
General	••
Solar Module Ground at Positive Pole	
Solar Module Ground at Positive Pole for Fronius IG Plus	••
Safety	
Setting inverters for grounded solar modules	
Solar Module Ground: Inserting Fuse or "100 kohm Grounding Kit" Option	
Opening Fronius IG Plus for Service/Maintenance	
Closing Fronius IG Plus	
Closing Fronius IG Plus	
Inserting Ontion Cards	
Suitable Option Cards	••
Soliable Option Calus	••
Salety	••
Olasian Evenius IO Dhus	••
	••
Data Communication and Solar Net	••
Solar Net and Data Interface	••
Example	••
Commissioning	••
Factory Configuration	••
Start-up operation	
Setting Inverters for Available Solar Module Ground	••
eration	
Product Description Fronius IG Plus	
Controls and Indicators	
Display	••
Operating Status LED	
Startup Phase and Grid Feed-in Mode	

General

Solar Module Ground at Negative Pole

Solar Module Ground at Negative Pole for Fronius IG Plus

Safety.....

Setting inverters for grounded solar modules

Solar Module Ground: Inserting Fuse or "100 kohm Grounding Kit" Option.....

Opening Fronius IG Plus for Service/Maintenance.....

General

Wire Cross Section of Solar Module Strings.....

Solar Module Ground at Positive Pole: Connecting Solar Module Strings

60

60

60

61

61

61

62

63

63

Test Procedure	92
Operation of Feeding Energy into the Grid	93
Navigation in the Menu Level	94
Activating display illumination	94
Automatic switch to the "Now" display mode or the startup phase	94
Accessing the Menu Level	94
The Display Modes	96
The Display Modes	96
Selecting a Display Mode	96
Overview of Display Values	96
Display Values in "Now" Display Mode	98
Selecting the "Now" Display Mode	98
Display values in the "Now" display mode	98
Options	100
Display Values in "Day / Year / Total" Display Modes	101
General	101
Selecting "Day / Year / Total" Display Mode	101
Display values in the 'Day / Year / Total' display modes	102
Options	104
The Setup Menu	105
Presetting	105
Accessing the Setup Menu	105
Scrolling through Menu Items	106
Menu Items in the Setup Menu	107
STANDBY	107
CONTRAST	107
LIGHT MODE	108
CASH	108
CO2	108
YIELD	108
IG no	109
DAT COM	109
ТІМЕ	110
LIMIT CFG	110
STATE PS	113
VERSION	113
Setting and Displaying Menu Items	114
Setting Menu Items - General	114
Examples of Setting and Displaying Menu Items	114
Setting the Currency and Charge Rate	114
Displaying and Setting Parameters in the "DATCOM" Menu Item	116
Setting Time and Date	119
Setup Lock function	122
General	122
Activating/deactivating the "Setup Lock" function	122
	122
roubleshooting and Maintenance	125
Status Diagnosis and Troubleshooting	127
Displaying Status Codes	127
Normal Operation Status Codes	127
Total Failure	127
Status Codes on Fronius IG Plus with Several Power Stage Sets	127
Class 1 Status Codes	128
Class 3 status codes	120
Class 4 status codes	122
	102

Customer Service	142
Maintenance	143
Safety	143
Operation in Dusty Environments	143
Opening Fronius IG Plus for Service/Maintenance	143
Replacing String Fuses	145
Safety	145
Preparation	145
Replacing Fuses	146
Finally	147

Appendix

Technical Data	151
Fronius IG Plus 30 V	151
Fronius IG Plus 35 V	152
Fronius IG Plus 50 V	153
Fronius IG Plus 70 V	154
Fronius IG Plus 100 V	155
Fronius IG Plus 120 V	156
Fronius IG Plus 150 V	157
Explanation of footnotes	157
Relevant Standards and Directives	158
CE Conformity Marking	158
Parallel Operation of In-Plant Power Generation Systems	158
Circuit to Prevent Islanding	158
Grid Failure	158
Warranty and Disposal	159
Fronius Manufacturer's Warranty	159
Extended warranty	159
Services within the Warranty Period	159
Transport	159
When making a warranty claim, attention should be paid to the following	159
Scope and Validity of Manufacturer's Warranty	160
Exceptions to the Fronius manufacturer's warranty	160
Geographical Validity	160
Other Legal Information	160
Disposal	161
	163

Safety rules

Safety Rules Explanation

DANGER! Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING! Indicates a potentially hazardous situation which, if not avoided, will result in death or serious injury.

CAUTION! Indicates a potentially harmful situation which, if not avoided, may result in minor and moderate injury or property damage.

NOTE! Indicates a risk of flawed results and possible damage to the equipment.

IMPORTANT! Indicates tips for correct operation and other particularly useful information. It does not indicate a potentially damaging or dangerous situation.

If you see any of the symbols depicted in the "Safety rules," special care is required.

General

The device is manufactured using state-of-the-art technology and according to recognized safety standards. If used incorrectly or misused, however, it can cause

- injury or death to the operator or a third party,
- damage to the device and other material assets belonging to the operator,
- inefficient operation of the device

All persons involved in commissioning, maintaining and servicing the device must

- be suitably qualified,
- have knowledge of and experience in dealing with electrical installations and
- read and follow these operating instructions carefully

The operating instructions must always be at hand wherever the device is being used. In addition to the operating instructions, attention must also be paid to any generally applicable and local regulations regarding accident prevention and environmental protection.

All safety and danger notices on the device

- must be kept in a legible state
- must not be damaged/marked
- must not be removed
- must not be covered, pasted or painted over

For the location of the safety and danger notices on the device, refer to the section headed "General" in the operating instructions for the device.

Before switching on the device, remove any faults that could compromise safety.

Utilization in Accordance with "Intended Purpose"

The device is to be used exclusively for its intended purpose.

Utilization for any other purpose, or in any other manner, shall be deemed to be "not in accordance with the intended purpose." The manufacturer shall not be liable for any damage resulting from such improper use.

Utilization in accordance with the "intended purpose" also includes

- carefully reading and obeying all the instructions and all the safety and danger notices in the operating instructions
- performing all stipulated inspection and servicing work
- installation as specified in the operating instructions

The following guidelines should also be applied where relevant:

- Regulations of the utility regarding energy fed into the grid
- Instructions from the solar module manufacturer

Environmental Conditions

Operation or storage of the device outside the stipulated area will be deemed as "not in accordance with the intended purpose." The manufacturer is not responsible for any damages resulting from unintended use.

For exact information on permitted environmental conditions, please refer to the "Technical data" in the operating instructions.

Qualified Service Engineers

The servicing information contained in these operating instructions is intended only for the use of qualified service engineers. An electric shock can be fatal. Do not perform any actions other than those described in the documentation. This also applies to those who may be qualified.

All cables and leads must be secured, undamaged, insulated and adequately dimensioned. Loose connections, scorched, damaged or inadequately dimensioned cables and leads must be immediately repaired by authorized personnel.

Maintenance and repair work must only be carried out by authorized personnel.

It is impossible to guarantee that externally procured parts are designed and manufactured to meet the demands made on them, or that they satisfy safety requirements. Use only original replacement parts (also applies to standard parts).

Do not carry out any modifications, alterations, etc. without the manufacturer's consent.

Components that are not in perfect condition must be changed immediately.

Safety Measures at the Installation Location

When installing devices with openings for cooling air, ensure that the cooling air can enter and exit unhindered through the vents. Only operate the device in accordance with the degree of protection shown on the rating plate.

Data Regarding Noise Emission Values

The inverter generates a maximum sound power level of < 80 dB(A) (ref. 1 pW) when operating under full load in accordance with IEC 62109-1.

The device is cooled as quietly as possible with the aid of an electronic temperature control system, and depends on the amount of converted power, the ambient temperature, the level of soiling of the device, etc.

It is not possible to provide a workplace-related emission value for this device, because the actual sound pressure level is heavily influenced by the installation situation, the power quality, the surrounding walls and the properties of the room in general.

EMC device classifications

Devices with emission class A:

- are only designed for use in an industrial setting
- can cause line-bound and radiated interference in other areas

Devices with emission class B:

- satisfy the emissions criteria for residential and industrial areas. This is also true for residential areas in which the energy is supplied from the public low voltage grid.

EMC device classification as per the rating plate or technical data.

EMC Measures

In certain cases, even though a device complies with the standard limit values for emissions, it may affect the application area for which it was designed (e.g., when there is sensitive equipment at the same location, or if the site where the device is installed is close to either radio or television receivers). If this is the case, then the operator is obliged to take appropriate action to rectify the situation.

Grid Connection

High-performance devices (> 16 A) can affect the voltage quality of the grid because of a high output current in the main supply.

This may affect a number of types of device in terms of:

- connection restrictions
- criteria with regard to maximum permissible mains impedance *)
- criteria with regard to minimum short-circuit power requirement *)

*) at the interface with the public grid

see Technical Data

In this case, the operator or the person using the device should check whether or not the device is allowed to be connected, where appropriate through discussion with the power supply company.

Electrical Installations

Electrical installations must only be carried out according to relevant national and local standards and regulations.

Protective Measures against ESD

Danger of damage to electrical components from electrical discharge. Suitable measures should be taken to protect against ESD when replacing and installing components.

Safety Measures in Normal Operation

Only operate the device when all protection devices are fully functional. If the protection devices are not fully functional, there is a risk of

- injury or death to the operator or a third party,
- damage to the device and other material assets belonging to the operator,
- inefficient operation of the device

Any safety devices that are not functioning properly must be repaired by authorized personnel before the device is switched on.

Never bypass or disable protection devices.

Safety Symbols

Devices with the CE marking satisfy the essential requirements of the low-voltage and electromagnetic compatibility directives. Further details can be found in the appendix or the chapter entitled "Technical data" in your documentation.

Disposal

Do not dispose of this device with normal domestic waste! To comply with the European Directive 2002/96/EC on Waste Electrical and Electronic Equipment and its implementation as national law, electrical equipment that has reached the end of its life must be collected separately and returned to an approved recycling facility. Any device that you no longer require must be returned to your dealer, or you must locate the approved collection and recycling facilities in your area. Ignoring this European Directive may have potentially adverse affects on the environment and your health!

Backup

The user is responsible for backing up any changes made to the factory settings. The manufacturer accepts no liability for any deleted personal settings.

Copyright

Copyright of these operating instructions remains with the manufacturer.

Text and illustrations are technically correct at the time of going to print. The right to make modifications is reserved. The contents of the operating instructions shall not provide the basis for any claims whatsoever on the part of the purchaser. If you have any suggestions for improvement, or can point out any mistakes that you have found in the operating instructions, we will be most grateful for your comments.

General Information

Protection of Persons and Equipment

Safety

WARNING! If the equipment is used or tasks are carried out incorrectly, serious injury or damage may result. Only qualified personnel are authorized to install your inverter and only within the scope of the respective technical regulations. It is essential that you read the "Safety regulations" chapter before commissioning the equipment or carrying out maintenance work.

Protection of Per- sons and Equip- ment	The design and function of the inverter offer a maximum level of safety, both during installation as well as operation.The inverter provides operator and equipment protection through:a) galvanic isolationb) monitoring the grid
Galvanic isolation	The inverter is equipped with a high frequency transformer that ensures galvanic isolation between the DC side and the grid, thus ensuring the highest possible safety.
Monitoring the Grid	 Whenever conditions in the electric grid are inconsistent with standard conditions (for example, grid switch-off, interruption), the inverter will immediately stop operating and interrupt the supply of power into the grid. Grid monitoring is carried out using: Voltage monitoring Frequency monitoring Monitoring islanding conditions
Warning notices affixed to the de- vice	The inverter contains warning notices and safety symbols. These warning notices and safety symbols must NOT be removed or painted over. The notices and symbols warn against operating the equipment incorrectly, as this may result in serious injury and damage.

WARNUNG!

Der Anschlussbereich darf nur von lizenzierten Elektro-Installateuren geöffnet werden. Der separate Bereich der Leistungsteile darf nur im spannungsfreien Zustand vom Anschlussbereich getrennt werden. Der separate Bereich der Leistungsteile darf nur durch geschultes Serviceperso-nal geöffnet werden.

Endladezeit der Kondensatoren abwarten. Die Entladezeit beträgt 5 Minuten. Der Neutralleiter des Netzes muss geerdet sein. Dem Licht ausgesetzte Solarmodule erzeugen gefährliche Spannung. Vor Arbeiten an den Solarmodulen den DC-Trenner betätigen und wenn vorhanden die Modulerdung aufheben.

WARNING!

The connection area should only be opened by a licensed electrician. The separate power module area should only be disconnected from the connection area after first being disconnected from the mains power. The separate power module area should only be opened by a trained service personnel

You must wait until the capacitors have discharged. Discharge takes 5 minutes. The network neutral conductor must be grounded. Solar modules exposed to light create dangerous voltage. Activate the DC disconnect and disengage the module ground, if available, before working on the solar modules.

ADVERTENCIA!

Sólo instaladores eléctricos oficiales pueden abrir la zona de conexión. La zona separada de las partes de poten-cia sólo se puede separar de la zona de conexión cuando se encuentra en el estado sin tensión. Sólo el personal de servicio formado puede abrir la zona separada de las piezas conductoras. Esperar el tiempo de descarga de los condensadores. El tiempo de descarga es de 5 minutos. El conductor neutro de la red debe estar conectado a tierra. Los módulos solares expuestos a la luz generan una tensión peligrosa. Antes de realizar trabajos en los módulos solares, activar el seccionador DC y anular la puesta a tierra del módulo, si ésta existe,

AVVISO!

La scatola dei collegamenti deve essere aperta soltanto da installatori elettrici qualificati. La zona separata delle fonti d'energia può essere staccata dalla scatola dei col-legamenti solo in assenza di tensione. La zona separata delle fonti d'energia può essere aperta solo da personale addestrato del servizio di assistenza. Attendere il tempo di scaricamento dei condensatori. Il tempo di scaricamento è di 5 minuti. Il con-duttore neutro della rete deve essere messo a terra. I moduli solari esposti alla luce generano tensione pericolosa. Prima di effettuare lavori sui moduli solari, azionare il separatore CC e annullare la messa a terra dei moduli, se presente.

AVERTISSEMENT !

Seuls des installateurs agréés sont habilités à ouvrir la zone de raccordement. Le bloc indépendant des étages de puissance ne doit être séparé de la zone de raccordement que si l'ensemble est hors tension. Seuls des installateurs formés sont habilités à ouvrir le bloc indépendant des étages de puissance

. Attendre l'expiration de la durée de décharge des condensateurs. Cette durée correspond à 5 minutes. Le conducteur neutre du secteur doit être mis à la terre. Les modules solaires exposés à la lumière produisent une tension dange-reuse. Avant toute intervention sur les modules solaires, activer le sectionneur DC et, si elle existe, supprimer la mise à la terre de module.

WAARSCHUWING!

Het aansluitgedeelte mag uitsluitend worden geopend door elektromonteurs die hiertoe zijn bevoegd. Het afzonderlijke deel van het vermogensgedeelte mag alleen in spanningsvrije toestand worden gescheiden van het aansluitgedeelte. Het afzonderlijke deel van het vermogensgedeelte mag uitsluitend worden geopend door geschoolde onderhoudsmedewerkers

Wacht tot de condensatoren volledig zijn ontladen. De ontlaadtijd bedraagt 5 minuten. De nulleiding van het net moet zijn geaard. Fotovoltaïsche modules die aan licht zijn blootgesteld, produceren een gevaarlijke spanning. Voordat u werkzaamheden verricht aan de fotovoltaïsche modules, moet u de DC-scheider bedienen en (indien aanwezig) de aarding van de module uitschakelen.

VAROVÁNÍ!

Prostor připojení smí otevřít pouze elektromontér s příslušnou licencí. Samostatnou oblast výkonového dílu lze od přípojné oblasti odpojit pouze, je-li odpojena od proudu. Samostatnou oblast výkonového dílu smí otevírat pouze vyškolený odborný personál. Vyčkejte na vybití kondenzátorů. Doba vybití je 5 minut.

Neutrální síťový vodič musí být uzemněn. Solární moduly vystavené světlu vytvářejí nebezpečné napětí. Před zahájením práce na solárních modulech aktivujte oddělovač DC a deaktivujte uzemnění modulu, je-li k dispozici.

경고 연결 영역은 면허가 있는 전기 기사만 열 수 있습니다. 별도의 전력 모듈 영역은 주 전원으로부터 먼저 차단한 후에만 연결 영역으로부터 차단시킬 수 있습니다. 랜드의 전력 모듈 영역은 교육을 받은 서비스 직원만 열 수 있습니다. 콘텐서가 방전될 때까지 기다려야 합니다. 방전은 5분이 소요됩니다. 네트워크 중성선은 접지되어야 합니다. 태양전지판이 빛에 노출되면 위험 전압이 발생합니다. 가능하면 DC를 차단하고 모듈 접지를 해제한 후에 태양전지판을 작동하십시오.

42 0409 3296

Safety symbols:

Risk of serious injury and damage due to incorrect operation

Do not use the functions described until you have thoroughly read and understood the following documents:

- these operating instructions
- all operating instructions for system components of the photovoltaic system, especially the safety rules

Dangerous electrical voltages

Text of warning notices:

WARNING!

The connection area should only be opened by a licensed electrician. The separate power stage set area should only be disconnected from the connection area after first being disconnected from the grid power. The separate power stage set area should only be opened by trained service personnel.

You must wait until the capacitors have discharged. Discharge takes 5 minutes. The neutral conductor of the grid must be grounded. Solar modules exposed to light create dangerous voltage. Activate the DC disconnect and disengage the module ground, if available, before working on the solar modules.

Warning notice on the wall bracket

The wall bracket contains a warning notice regarding the installation of several inverters next to each other. This warning notice must not be removed or painted over. It warns against incorrect installation, which could result in property damage.

The spacing information listed in the warning notice from the wall/ceiling to the inverter and from inverter to inverter must be observed when installing several inverters next to each other.

The Fronius IG Plus Unit in the PV System

General	The solar inverter is the highly complex link between the solar modules and the public grid.
Tasks	 The main tasks of the inverter include: Converting DC to AC current Fully automatic operational management Display function and data communication
Converting DC to AC Current	The inverter transforms the direct current generated by the solar modules into alternating current. This alternating current is fed into your home system or into the public grid and synchronized with the voltage that is used there. IMPORTANT! The inverter has been designed exclusively for use in grid-connected photovoltaic systems. It cannot generate electric power independently of the grid.
Fully Automatic Operational Man- agement	The inverter is fully automatic. Starting at sunrise, as soon as the solar modules generate enough power, the automatic control unit starts monitoring voltage and frequency. After five minutes, if there is a sufficient level of irradiance, your solar inverter starts feeding en- ergy to the grid. The inverter control system ensures that the maximum possible power output is drawn from the solar modules at all times. This function is called MPPT (Maximum Power Point Tracking). As dusk starts and there is no longer sufficient energy available to feed power into the grid, the inverter unit shuts down the grid connection completely and stops operating. All set- tings and recorded data are saved.
Display function and data commu- nication	The display on the inverter is the interface between the inverter and the operator. The de- sign of the display is geared towards simple operation and making system data available as long as the inverter operates. The inverter is equipped with a basic logging function to monitor minimum and maximum data on a daily and a cumulative basis. These values are shown on the display. A wide range of data communication products allows for many possibilities of recording and viewing data.
System Upgrade	 The inverter is designed for various system upgrades, e.g.: Upgrades that enable the inverter to communicate with external system upgrades as well as with other inverters Datalogger (when using a PC to record and manage data from your photovoltaic system), includes Datalogger and a modem interface

	 Various large-format displays Fronius Personal Display Actuators (e.g.: relays, alarms) Interface cards
	System upgrades are available as plug-in cards.
Forced Ventila- tion	 The inverter's temperature-controlled, variable-speed fan with ball-bearing support provides: optimal inverter cooling efficiency increases cooler components, thus improving service life least possible energy consumption and lowest possible noise level weight reduction due to a reduction of the cooling element surface
100 kohm Grounding Kit Option	Along with the solar module ground on the positive or negative pole, solar modules can also be grounded with high resistance on the positive or negative pole. This requires the 100 kohm Grounding Kit option, which is inserted into the corresponding fuse holder similar to a regular fuse for the solar module ground.
Power derating	Should there be insufficient heat dissipation in spite of the fan operating at maximum speed (for example, inadequate heat transfer away from the heat sinks), the power will be derated to protect the inverter when the ambient temperature reaches approx. 40 °C and above. Derating the power reduces the output of the inverter for a short period sufficient to ensure that the temperature will not exceed the permissible limit. Your inverter will remain ready for operation as long as possible without any interruption.

Installation and Startup

Fronius IG Plus Installation and Connection

The power stage set and the connection area are separated from each other for delivery.

- (1) Power stage set(s)
- (2) Connection area

Overview

'Fronius IG Plus Installation and Connection' contains the following sections:

- Choosing the Location
- Fronius IG Plus Connection Options
- Knockouts on the Fronius IG Plus
- Fronius IG Plus Installation
- Connecting the Fronius IG Plus to the Public Grid (AC)
- Connecting Solar Module Strings to the Fronius IG Plus (DC)
- Closing Fronius IG Plus

Choosing the Location

Choosing the Location, General

Please note the following criteria when choosing a location for the inverter:

It should only b	e installed on a	stable, vertical wa	۱
------------------	------------------	---------------------	---

Max. ambient temperatures: -20 °C / +55 °C

Relative humidity: 0 - 95 %

For use at altitudes above sea level: up to 2000 m

- There should be a 200 mm (7.8 in) clearance on both sides of the inverter for the cool air vents.
- Maintain a side distance of 300 mm (11.8 in) between individual inverters.

The air flow direction within the inverter is from right to left (cold air intake on right, hot air exit on left).

When installing the inverter in a switch panel cabinet (or similar closed environment), it is necessary to make sure that the hot air that develops will be discharged by forced ventilation.

The inverter is designed for installation both indoors and outdoors.

Choosing a Location for Inside Installation

During certain operation phases the inverter may produce a slight noise. For this reason it should not be installed in an occupied living area.

Do not install the inverter in:

- areas with large amounts of dust -
- areas with large amounts of conducting dust particles (e.g., iron filings)
- areas with corrosive gases, acids or salts
- areas where there is an increased risk of accidents, e.g., from farm animals (horses, cattle, sheep, pigs, etc.)
- stables or adjoining areas
- storage areas for hay, straw, chaff, animal feed, fertilizers, etc. -
- storage or processing areas for fruit, vegetables or winegrowing products
- areas used in the preparation of grain, green fodder or animal feeds
- greenhouses

Choosing a location for outdoor installation

Because of its degree of protection, the inverter is not susceptible to splash water from any direction.

However the manufacturer recommends, if possible, not to expose the inverter to direct weathering, in order to prevent water deposits caused by rain or snow.

In order to protect the display, the inverter should not be exposed to direct sunlight. Ideally, the inverter should be installed in a protected location, e.g., near the solar modules or under a roof overhang.

Do not install the inverter:

- where it can be exposed to ammonia, corrosive gasses, acids or salts (e.g., fertilizer storage areas, vent openings of livestock stables, chemical plants, tanneries)

Fronius IG Plus Connection Options

Description Item

- (1) Fuse cover (6 x for string fuses, 1 x for the solar module ground fuse)
- (2) Jumper slot SMON
- (3) DC+ main switch wire
- (4) 6 DC+ fuse holders
- (5) Jumper slot SMOFF
- DC- main switch wire (6)
- (7) Plug-in card for country setup (IG Brain)
- (8) Open card slot for an option card
- (9) Open card slot for a second option card
- Open card slot for a third option card (10)
- (11)Fuse holder for solar module ground
- (12)Strain relief for plug-in card cable
- (13)AC-side terminals
- (14)Metric screw joint M32 or M40 (AC connection)
- (15) 6 DC- terminals

tions

ltem	Description
(16)	Strain relief for solar module strings
(17)	6 DC+ terminals
(18)	DC main switch

Knockouts on the Fronius IG Plus

General

The inverter contains several knockouts of different sizes. When knocked out, the openings are used for the inputs of various wires.

Removing Knock- The knockouts made from plastic as well as the larger ones made from metal should only be removed from the outside in.

The smaller knockouts made from metal should be removed from the inside out.

You should only remove the number of knockouts required for the available cables (e.g., 6 openings for 3 module strings).

The plastic knockouts are also equipped with centering holes so that they can be drilled out if required.

Fronius IG Plus Installation

Attaching the wall bracket

IMPORTANT! Depending on the surface, different dowels and screws may be required for installing the wall bracket. Therefore, these dowels and screws are not part of the scope of supply for the inverter. The system installer is responsible for selecting the proper dowels and screws.

NOTE! The Fronius IG Plus should only be installed upright on the wall.

IMPORTANT! Attach the wall bracket so that the display marking (*) on the wall bracket is at eye level.

Lifting the Fronius IG Plus Fronius recommends using a commercially-available vacuum lifting pad for flat surfaces to lift the connection area and power stage set.

IMPORTANT

- The vacuum lifting pads must be designed for the weight of the connection area and power stage set.
- Follow all safety instructions from the vacuum lifting pad manufacturer.
- Vacuum lifting pads are not part of the scope of delivery for the inverter.

Weight information for the connection area and power stage set:

Inverter	Connection area	Power stage set
Fronius IG Plus 30 V-1	9,85 kg	13,95 kg
Fronius IG Plus 35 V-1	9,85 kg	13,95 kg
Fronius IG Plus 50 V-1	9,85 kg	13,95 kg
Fronius IG Plus 70 V-1	9,85 kg	26,10 kg
Fronius IG Plus 70 V-2	9,85 kg	26,10 kg
Fronius IG Plus 100 V-1	10,80 kg	26,10 kg
Fronius IG Plus 100 V-2	10,85 kg	26,10 kg
Fronius IG Plus 120 V-3	11,05 kg	38,15 kg
Fronius IG Plus 150 V-3	11,05 kg	38,15 kg

Fronius IG Plus installation

- **NOTE!** For inverter assembly, please ensure that:
- the wall bracket is fixed securely to the wall
 - the connector is hung and fixed to the wall bracket
 - the power stage set is hung on the wall bracket and fixed to the connector

Use the screws in the bag attached to the wall bracket to secure the power stage set to the connection area.

B

Connecting the Fronius IG Plus to the Public Grid (AC)

Monitoring the Grid

IMPORTANT! The resistance in the leads to the AC-side connection terminals must be as low as possible for optimal functioning of grid monitoring.

Installations with Several Inverters For larger photovoltaic systems, it is possible to connect several inverters in parallel without any problems. To ensure symmetrical feeding, connect the inverters uniformly to all 3 phases.

AC-Side Terminals

One-Phase Inverters

Two-Phase Inverters

Three-Phase Inverters

Legend:

- L1 Phase conductor
- L2 Phase conductor
- L3 Phase conductor
- PE PE conductor *)
- N Neutral conductor
- (a) Grounding electrode terminal *)
- (b) Terminal for possible grounding of the solar module frame
- (c) "US Sense" terminal (for USA) *)

max. cable cross section 25 mm²

*) **IMPORTANT:** Only one PE conductor terminal is available on the Fronius IG Plus 100V-2.
Grid Neutral Conductor

NOTE! Make sure that the grid neutral conductor is grounded.

Connecting Aluminum Cables

Cross Section of AC Wires For M32 metric screw joint: Cable diameter 11 - 21 mm

For M40 metric screw joint: Cable diameter 19 - 28 mm

If required, use reducers for smaller cable diameters.

Safety

WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules.

- The connection area should only be opened by a licensed electrician.
- The separate power stage set area should only be disconnected from the connection area after first being disconnected from the grid power.
- The separate power stage set area should only be opened by Fronius-trained service personnel.

Never work with live wires! Prior to all connection work, make sure that the AC and DC wires are not charged.

CAUTION! Danger of damaging the inverter by overloading the grid neutral conductor.

- Do not connect 2-phase and 3-phase devices together to one phase
- Never operate multi-phase devices in one phase

CAUTION! Danger of damaging the inverter from improperly connected terminals. Improperly connected terminals can cause thermal damage to the inverter and may cause a fire. When connecting the AC and DC cables, make sure that all terminals are tightened securely using the proper torque.

Connecting the Fronius IG Plus to the public grid (AC) Only an authorized electrician is permitted to connect this inverter to the public grid.

NOTE! Finely stranded cables up to conductor class 5 can be connected to the AC-side terminals without wire end ferrules.

Terminal tightening torque: 2 Nm

Maximum ACside overcurrent protection

Inverter	Number of phases	Nominal output	Fuse protection
Fronius IG Plus 30 V-1	1	3 kW	1 x C 20 A
Fronius IG Plus 35 V-1	1	3,5 kW	1 x C 20 A
Fronius IG Plus 50 V-1	1	4 kW	1 x C 25 A
Fronius IG Plus 70 V-1	1	6,5 kW	1 x C 40 A
Fronius IG Plus 70 V-2	2	6,5 kW	2 x C 20 A
Fronius IG Plus 100 V-1	1	8 kW	1 x C 50 A
Fronius IG Plus 100 V-2	2	8 kW	2 x C 25 A
Fronius IG Plus 120 V-3	3	10 kW	3 x C 20 A
Fronius IG Plus 150 V-3	3	12 kW	3 x C 25 A

NOTE! A residual current circuit breaker for the AC connecting cable may be required depending on local regulations, the power supply company as well as other conditions. A type A residual current circuit breaker is generally sufficient in this case. However, false alarms can be triggered for the residual current circuit breaker in individual cases and depending on local conditions. For this reason, Fronius recommends that you use a residual current circuit breaker suitable for a frequency converter.

NOTE! Three-phase inverters only: When using a residual current circuit breaker, the voltage difference between the PE grounding conductor and the N neutral conductor cannot be higher than 8 V.

Connecting Solar Module Strings to the Fronius IG Plus (DC)

General Information about Solar Modules In order to select suitable solar modules and get the most efficient use out of the inverter, please note the following points:

- If irradiance is constant and the temperature is falling, the open circuit voltage of the solar modules will increase. Open circuit voltage may not exceed 600 V.Whenever the open circuit voltage of the solar modules exceeds 600 volts, the inverter may be damaged, and all warranty rights will become null and void.
- More exact values for dimensioning solar modules for the chosen installation location can be provided using suitable calculation programs like the Fronius Solar.configurator (available at http://www.fronius.com).

NOTE! Before connecting solar modules:

- make sure that the voltage specified by the manufacturer corresponds to the actual measured voltage
- determine whether or not a solar module ground is required

Safety

WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules.

- The connection area should only be opened by a licensed electrician.
- The separate power stage set area should only be disconnected from the connection area after first being disconnected from the grid power.
- The separate power stage set area should only be opened by Fronius-trained service personnel.

Never work with live wires! Prior to all connection work, make sure that the AC and DC wires are not charged.

The DC main switch is only used to switch off power to the power stage set. When the DC main switch is turned off, the connection area is still energized.

CAUTION! Danger of damaging the inverter from improperly connected terminals. Improperly connected terminals can cause thermal damage to the inverter and may cause a fire. When connecting the AC and DC cables, make sure that all terminals are tightened securely using the proper torque.

DC-Side Terminals

Connecting aluminum cables (DC)

The DC-side terminals are designed for connecting single-wire, round aluminum cables. The following points must be taken into account when connecting aluminum cables due to the non-conducting oxide layer of aluminum:

- The reduced rated currents for aluminum cables
- The connection requirements listed below

Reduced rated currents for aluminum cables:

Rated cross section	Reduced rated current
2.5 mm ²	20 A
4 mm ²	27 A
6 mm²	35 A
10 mm²	48 A
16 mm²	64 A

NOTE! Take into account local specifications when configuring cable cross sections.

Connection requirements:

Carefully clean off the oxide layer of the stripped cable end, e.g., using a knife. 1

IMPORTANT! Do not use brushes, files or sandpaper. Aluminum particles may get stuck and can transfer to other cables.

After removing the oxide layer of the cable end, rub in a neutral grease, e.g., acid- and alkali-free Vaseline.

Then immediately connect to the terminal. 3

Repeat the steps above whenever the cable is disconnected and then reconnected.

Polarity Reversal of Solar Module Strings

The inverter comes standard with 6 metal slugs in fuse holders in the connection area. The inverter is designed so that a reverse polarity of all solar module strings will not cause any damage to the inverter when these metal slugs are used.

CAUTION! However, there is a risk of damage and fire to the inverter due to reverse polarity of a solar module string when the metal slugs are used.

The reverse polarity of a solar module string can cause an unacceptable thermal load, which can lead to an inverter fire.

When using metal slugs, always make sure that the polarity is correct before connecting the individual solar module strings.

If string fuses are used instead of the metal slugs, the reverse polarity of an individual solar module string can cause damage to the inverter and cause an inverter fire.

CAUTION! Risk of damage and fire to inverter due to reverse polarity of solar module strings when using string fuses.

Reverse polarity of solar module strings can lead to an unacceptable overload to a string fuse being used. This can cause a strong arc, which can lead to an inverter fire.

When using string fuses, always make sure that the polarity is correct before connecting the individual solar module strings.

Overview

'Connecting Solar Module Strings to the Fronius IG Plus (DC)' includes the following sections:

- Ungrounded System: Connecting Solar Module Strings
- Criteria for the Proper Selection of String Fuses
- Ungrounded System: Connecting Solar Module Strings with a Cable Cross Section > 16 mm²
- Solar Module Ground at Negative Pole: Connecting Solar Module Strings
- Criteria for the Proper Selection of String Fuses
- Solar Module Ground at Negative Pole: Connecting Solar Module Strings with a Cable Cross Section > 16 mm²
- Solar Module Ground at Negative Pole for Fronius IG Plus
- Solar Module Ground at Positive Pole: Connecting Solar Module Strings
- Criteria for the Proper Selection of String Fuses
- Solar Module Ground at Positive Pole: Connecting Solar Module Strings with a Cable Cross Section > 16 mm²
- Solar Module Ground at Positive Pole for Fronius IG Plus

Ungrounded System: Connecting Solar Module Strings

Wire Cross Section of Solar Module Strings The cable cross section for solar module strings should be a maximum of 16 $\rm mm^2\,per$ cable.

NOTE! To ensure an effective strain relief device for solar module strings, only use cable cross sections of the same size.

Ungrounded system: Connecting solar module strings

NOTE! Finely stranded cables up to conductor class 5 can be connected to the DC-side terminals without wire end ferrules.

Tightening torque of terminals: 1.2 - 1.5 Nm

IMPORTANT!

- Set the jumper from the ${\rm 'SM}_{\rm ON}{\rm '}$ position to the ${\rm 'SM}_{\rm OFF}{\rm '}$ position for correct measurement results
- Check the polarity and voltage of the solar module strings: the voltage should be a max. of 600 V, the difference between the individual solar module strings should be a max. of 10 V.

IMPORTANT!

 When connecting solar module strings, you should use metal bolts or string fuses with fuse covers in the fuse holders depending on the solar module manufacturer's instructions.

The metal bolts are included in the inverter scope of delivery.

- Place metal bolts with fuse covers in the fuse holders for unoccupied DC+ terminals.

For more information on string fuses, see the section "Criteria for the proper selection of string fuses."

Selecting String Fuses If the solar module manufacturer requires the use of string fuses for operation:

Select string fuses according to the information from the solar module manufacturer or according to "Criteria for the Proper Selection of String Fuses" (max. 20 A per solar module string, max. 6 solar module strings)

IMPORTANT!

- Please follow solar module safety instructions
- Follow all solar module manufacturer requirements

NOTE! If the solar module manufacturer requires the use of string fuses:

- Insert fuses with a fuse cover in the respective fuse holder
- Do not operate the inverter without fuse covers

WARNING! An electric shock can be fatal. Danger from DC voltage from solar modules. Fuse covers are for installation purposes only. They offer no protection against contact.

Criteria for the Proper Selection of String Fuses

General	The use of string fuses in the inverter also adds fuse protection to the solar modules. A crucial factor for the fuse protection of solar modules is the maximum short circuit current I_{sc} of the respective solar module.
Criteria for the Proper Selection of String Fuses	The following criteria must be fulfilled for each solar module string when using fuse protection: - $I_N > 1.5 \times I_{SC}$ - $I_N < 2.0 \times I_{SC}$ - $V_N > = 600 \text{ V DC}$ - Fuse dimensions: Diameter 10.3 x 35 - 38 mm
	 I_N Nominal current rating of fuse I_{SC} Short circuit current for standard test conditions (STC) according to solar module data sheet V_N Nominal voltage rating of fuse
Effects of Using Underrated Fuses	With underrated fuses, the nominal current value may be less than the short circuit current of the solar module. Effect: The fuse may trip in intensive lighting conditions.
Fuse Recommen- dations	NOTE! Only select fuses suitable for a voltage of 600 V DC.
	 You should only use the following fuses, which have been tested by Fronius, to ensure problem-free fuse protection: Littelfuse KLKD fuses Cooper Bussmann PV fuses
	Fronius shall not be liable for any damage or other incidents resulting from the use of other fuses. In addition, all warranty claims are forfeited.
Application Ex-	e.g.: Maximum short circuit current (I_{SC}) of the solar module = 5.75 A
ampic	According to the criteria for selecting the correct fuse, the fuse must have a nominal current greater than 1.5 times the short circuit current: $5.75 \text{ A} \times 1.5 = 8.625 \text{ A}$
	The fuse that should be selected according to the "Fuses" table: KLK D 9 with 9.0 A and 600 V AC / DC

Nominal current	Fuse	Nominal current	Fuse
4.0 A	KLK D 4	9.0 A	KLK D 9
5.0 A	KLK D 5	10.0 A	KLK D 10
6.0 A	KLK D 6	12.0 A	KLK D 12
7.0 A	KLK D 7	15.0 A	KLK D 15
8.0 A	KLK D 8	20.0 A	KLK D 20

'Fuses' table: Extract of suitable fuses, e.g. Littelfuse fuses

Ungrounded System: Connecting Solar Module Strings with a Cable Cross Section > 16 mm²

General

As an option, you can also connect DC cables to the inverter with a cross section > 16 mm², e.g., when the DC cables from the solar modules are combined outside of the inverter into a large string.

Additional components required The following additional components are required for connecting DC cables with a cross section > 16 mm²:

- 2 M32 metric screw joints (degree of protection min. IP45)
- 2 connection distributors

*)

Metric screw joints and connection distributors are available from Fronius as an option.

- 2 M10 cable lugs

Select cable lugs that match the available DC cables

2 M10 hexagon nuts

CAUTION! Danger of damaging the inverter by overload. Connect the DC+ and DC- cables to the correct DC+ and DC- terminals on the inverter.

Tightening torque of terminals: 1.2 - 1.5 Nm Tightening torque of hexagon nut on the connection distributor: max. 15 Nm

Tightening torque of terminals: 1.2 - 1.5 Nm Tightening torque of hexagon nut on the connection distributor: max. 15 Nm

IMPORTANT!

- Set the jumper from the 'SM_{ON}' position to the 'SM_{OFF}' position for correct measurement results
- Check the polarity and voltage of the DC cables strings: The voltage should be a max. of 600 V.

IMPORTANT When using connection distributors, insert 6 metal bolts with fuse covers in the fuse holders. The metal bolts are included in the inverter scope of delivery.

Solar Module Ground at Negative Pole: Connecting Solar Module Strings

General

The following steps are only necessary when the solar module manufacturer requires a solar module ground at the negative pole.

Wire Cross Section of Solar Module Strings The cable cross section for solar module strings should be a maximum of 16 mm² per cable.

NOTE! To ensure an effective strain relief device for solar module strings, only use cable cross sections of the same size.

Solar module ground at negative pole: Connecting solar module strings

NOTE! Finely stranded cables up to conductor class 5 can be connected to the DC-side terminals without wire end ferrules.

Tightening torque of terminals: 1.2 - 1.5 Nm

IMPORTANT!

- Set the jumper from the ${\rm 'SM}_{\rm ON}{\rm '}$ position to the ${\rm 'SM}_{\rm OFF}{\rm '}$ position for correct measurement results
- Check the polarity and voltage of the solar module strings: the voltage should be a max. of 600 V, the difference between the individual solar module strings should be a max. of 10 V.

IMPORTANT!

 When connecting solar module strings, you should use metal bolts or string fuses with fuse covers in the fuse holders depending on the solar module manufacturer's instructions.

The metal bolts are included in the inverter scope of delivery.

- Place metal bolts with fuse covers in the fuse holders for unoccupied DC+ terminals.

For more information on string fuses, see the section "Criteria for the proper selection of string fuses."

Selecting String Fuses If the solar module manufacturer requires the use of string fuses for operation:

Select string fuses according to the information from the solar module manufacturer or according to "Criteria for the Proper Selection of String Fuses" (max. 20 A per solar module string, max. 6 solar module strings)

IMPORTANT!

- Please follow solar module safety instructions
- Follow all solar module manufacturer requirements

NOTE! If the solar module manufacturer requires the use of string fuses:

- Insert fuses with a fuse cover in the respective fuse holder
- Do not operate the inverter without fuse covers

WARNING! An electric shock can be fatal. Danger from DC voltage from solar modules. Fuse covers are for installation purposes only. They offer no protection against contact.

Criteria for the Proper Selection of String Fuses

General	The use of string fuses in the inverter also adds fuse protection to the solar modules. A crucial factor for the fuse protection of solar modules is the maximum short circuit current I_{sc} of the respective solar module.
Criteria for the Proper Selection of String Fuses	The following criteria must be fulfilled for each solar module string when using fuse protection: - $I_N > 1.5 \times I_{SC}$ - $I_N < 2.0 \times I_{SC}$ - $V_N > = 600 \text{ V DC}$ - Fuse dimensions: Diameter 10.3 x 35 - 38 mm
	 I_N Nominal current rating of fuse I_{SC} Short circuit current for standard test conditions (STC) according to solar module data sheet V_N Nominal voltage rating of fuse
Effects of Using Underrated Fuses	With underrated fuses, the nominal current value may be less than the short circuit current of the solar module. Effect: The fuse may trip in intensive lighting conditions.
Fuse Recommen- dations	NOTE! Only select fuses suitable for a voltage of 600 V DC.
	You should only use the following fuses, which have been tested by Fronius, to ensure problem-free fuse protection: - Littelfuse KLKD fuses - Cooper Bussmann PV fuses
	Fronius shall not be liable for any damage or other incidents resulting from the use of other fuses. In addition, all warranty claims are forfeited.
Application Ex- ample	e.g.: Maximum short circuit current (I_{SC}) of the solar module = 5.75 A According to the criteria for selecting the correct fuse, the fuse must have a nominal current greater than 1.5 times the short circuit current: 5.75 A x 1.5 = 8.625 A
	The fuse that should be selected according to the "Fuses" table: KLK D 9 with 9.0 A and 600 V AC / DC

Nominal current	Fuse	Nominal current	Fuse
4.0 A	KLK D 4	9.0 A	KLK D 9
5.0 A	KLK D 5	10.0 A	KLK D 10
6.0 A	KLK D 6	12.0 A	KLK D 12
7.0 A	KLK D 7	15.0 A	KLK D 15
8.0 A	KLK D 8	20.0 A	KLK D 20

'Fuses' table: Extract of suitable fuses, e.g. Littelfuse fuses

Solar Module Ground at Negative Pole: Connecting Solar Module Strings with a Cable Cross Section > 16 mm²

General

The following steps are only necessary when the solar module manufacturer requires a solar module ground at the negative pole.

As an option, you can also connect DC cables to the inverter with a cross section > 16 mm^2 , e.g., when the DC cables from the solar modules are combined outside of the inverter into a large string.

Additional com-
ponents requiredThe following additional components are required for connecting DC cables with a cross
section > 16 mm²:

- 2 M32 metric screw joints (degree of protection min. IP45)
- 2 connection distributors

*)

Metric screw joints and connection distributors are available from Fronius as an option.

- 2 M10 cable lugs

Select cable lugs that match the available DC cables

2 M10 hexagon nuts

Solar module ground at negative pole: Connecting solar module strings with a cable cross section > 16 mm²

CAUTION! Danger of damaging the inverter by overload. Connect the DC+ and DC- cables to the correct DC+ and DC- terminals on the inverter.

Tightening torque of terminals: 1.2 - 1.5 Nm Tightening torque of hexagon nut on the connection distributor: max. 15 Nm

Tightening torque of terminals: 1.2 - 1.5 Nm Tightening torque of hexagon nut on the connection distributor: max. 15 Nm

IMPORTANT!

- Set the jumper from the 'SM_{ON}' position to the 'SM_{OFF}' position for correct measurement results
- Check the polarity and voltage of the DC cables strings: The voltage should be a max. of 600 V.

IMPORTANT When using connection distributors, insert 6 metal bolts with fuse covers in the fuse holders. The metal bolts are included in the inverter scope of delivery.

Solar Module Ground at Negative Pole for Fronius IG Plus

General

Some manufacturers of solar modules stipulate that the module must be grounded.

IMPORTANT: Take into account the following points if a solar module ground is required:

- Specifications of the solar module manufacturer regarding polarity and required type of solar module ground
- National provisions

Solar Module Ground at Negative Pole

Example: Solar module ground at negative pole with fuse or high ohm resistor

- (1) Solar module
- (2) Inverter
- (3) Fuse / High ohm resistor

Solar Module Ground at Negative Pole for Fronius IG Plus You can ground solar modules in the Fronius IG Plus using a fuse or a high ohm resistor.

Fuse holder on the Fronius IG Plus for the solar module ground

Fronius recommends a fuse with 1 A and a dimension of 10×38 mm for solar module grounding.

For solar module grounding using a high ohm resistor, Fronius exclusively recommends the "100 kohm Grounding Kit" option. **WARNING!** An electric shock can be fatal. Danger from DC voltage from solar modules. The inverter's insulation monitoring is deactivated when the solar modules are grounded.

- Ensure that grounded solar modules are designed so that they are isolated according to Protection Class II
- Place the relevant safety sticker in a clearly visible place on the photovoltaic system
- Set the inverter so that an error message is displayed if the fuse trips.

Safety Label for the Solar Module Ground

IMPORTANT: Safety labels and the fuse for solar module grounding are not included in the inverter scope of delivery, and must be obtained separately.

Setting inverters for grounded solar modules

When solar modules are grounded, the inverter's insulation monitoring is deactivated. For this reason, you must make a setting in the 2nd level of the Setup menu so that an error message is displayed or the inverter turns off when the ground fuse is blown (depending on the country setup).

A code is required to access the 2nd level of the Setup menu. This code can be obtained from Fronius. Additional information regarding accessing the 2nd level of the Setup menu will be provided along with the code.

Solar Module Ground: Inserting Fuse or "100 kohm Grounding Kit" Option

- **NOTE!** If the solar module manufacturer requires a ground for solar modules at the negative pole:
 - Insert the "100 kohm Grounding Kit" option into the fuse holder completely with the plastic jacket
 - Do not operate the inverter without the plastic jacket when using the "100 kohm Grounding Kit" option

or

- Insert the fuse with a fuse cover in the fuse holder
- Do not operate the inverter without a fuse cover

WARNING! An electric shock can be fatal. Danger from DC voltage from solar modules. Fuse covers are for installation purposes only. They offer no protection against contact.

The DC main switch is only used to switch off power to the power stage set. When the DC main switch is turned off, the solar module ground at the negative pole remains unaffected. Never touch the DC+ and DC-.

Inserting a fuse:

*) The plastic bolts are included in the inverter scope of delivery

Inserting the "100 kohm Grounding Kit" option:

*) Remove standard fuse holder with plastic bolt

Fronius recommends a fuse with 1 A and a dimension of 10×38 mm for solar module grounding.

Inserting the fuse will ground the solar module at the negative pole.

Insert the "100 kohm Grounding Kit" option into the fuse holder completely with the plastic jacket

Inserting the "100 kohm Grounding Kit" option grounds the solar module at the negative pole via a high ohm resistor.

Procedure for opening the inverter for service or maintenance:

Opening Fronius IG Plus for Service/Maintenance

Disconnect AC and DC supply from the inverter

- 2 Open the connection area
- 3 Turn off DC main switch
- Allow the capacitors to discharge (5 minutes)
- 5 Remove metal covers
- 6 If present, remove the fuse for the solar module ground
- If present, remove string fuses
- B Disconnect DC wire
- 9 Disconnect AC wire

Solar Module Ground at Positive Pole: Connecting Solar Module Strings

General

The following steps are necessary when the solar module manufacturer requires a solar module ground at the positive pole.

Wire Cross Section of Solar Module Strings The cable cross section for solar module strings should be a maximum of 16 mm² per cable.

NOTE! To ensure an effective strain relief device for solar module strings, only use cable cross sections of the same size.

Solar module ground at positive pole: Connecting solar module strings

After disconnecting the DC main switch cable:

- Connect the DC+ cable to the DC- connection as per step 5
- Connect the DC- cable to the DC+ connection as per step 5
- Identify the reversed polarity with (+) and (-) according to steps 6 and 7

NOTE! Finely stranded cables up to conductor class 5 can be connected to the DC-side terminals without wire end ferrules.

CAUTION! Danger of damaging the inverter by overload.

- Only connect a maximum of 20 A to an individual DC terminal.
- Connect the DC+ cable to the right connection block of the inverter's DC terminals.
- Connect the DC- cable to the left connection block of the inverter's DC terminals.
- Identify the reversed polarity with (+) and (-) according to step 10

Tightening torque of terminals: 1.2 - 1.5 Nm

IMPORTANT!

- Set the jumper from the 'SM_{ON}' position to the 'SM_{OFF}' position for correct measurement results
- Check the polarity and voltage of the solar module strings: the voltage should be a max. of 600 V, the difference between the individual solar module strings should be a max. of 10 V.

IMPORTANT!

- When connecting solar module strings, you should use metal bolts with fuse covers in the fuse holders depending on the solar module manufacturer's instructions.
 The metal bolts are included in the inverter scope of delivery.
- Place metal bolts with fuse covers in the fuse holders for unoccupied DC+ terminals.

Selecting String Fuses

If the solar module manufacturer requires the use of string fuses for operation:

Select string fuses according to the information from the solar module manufacturer or according to "Criteria for the Proper Selection of String Fuses" (max. 20 A per solar module string, max. 6 solar module strings)

IMPORTANT!

- Please follow solar module safety instructions
- Follow all solar module manufacturer requirements

Inserting String Fuses

- **NOTE!** If the solar module manufacturer requires the use of string fuses:
 - Insert fuses with a fuse cover in the respective fuse holder
 - Do not operate the inverter without fuse covers

WARNING! An electric shock can be fatal. Danger from DC voltage from solar modules. Fuse covers are for installation purposes only. They offer no protection against contact.

Criteria for the Proper Selection of String Fuses

General	The use of string fuses in the inverter also adds fuse protection to the solar modules. A crucial factor for the fuse protection of solar modules is the maximum short circuit current I_{sc} of the respective solar module.
Criteria for the Proper Selection of String Fuses	$ \begin{array}{ll} \mbox{The following criteria must be fulfilled for each solar module string when using fuse protection:} \\ & & I_N > 1.5 \times I_{SC} \\ & & I_N < 2.0 \times I_{SC} \\ & & V_N > = 600 \ V \ DC \\ & & Fuse dimensions: Diameter 10.3 \times 35 - 38 \ mm \\ \hline I_N & Nominal current rating of fuse \\ I_{SC} & Short circuit current for standard test conditions (STC) according to solar module data sheet \\ \end{array} $
	V _N Nominal voltage rating of fuse
Effects of Using Underrated Fuses	With underrated fuses, the nominal current value may be less than the short circuit current of the solar module. Effect: The fuse may trip in intensive lighting conditions.
Fuse Recommen- dations	NOTE! Only select fuses suitable for a voltage of 600 V DC.
	You should only use the following fuses, which have been tested by Fronius, to ensure problem-free fuse protection: - Littelfuse KLKD fuses - Cooper Bussmann PV fuses
	Fronius shall not be liable for any damage or other incidents resulting from the use of other fuses. In addition, all warranty claims are forfeited.
Application Ex- ample	e.g.: Maximum short circuit current (I_{SC}) of the solar module = 5.75 A
	According to the criteria for selecting the correct fuse, the fuse must have a nominal current greater than 1.5 times the short circuit current: $5.75 \text{ A} \times 1.5 = 8.625 \text{ A}$
	The fuse that should be selected according to the "Fuses" table: KLK D 9 with 9.0 A and 600 V AC / DC

Nominal current	Fuse	Nominal current	Fuse
4.0 A	KLK D 4	9.0 A	KLK D 9
5.0 A	KLK D 5	10.0 A	KLK D 10
6.0 A	KLK D 6	12.0 A	KLK D 12
7.0 A	KLK D 7	15.0 A	KLK D 15
8.0 A	KLK D 8	20.0 A	KLK D 20

'Fuses' table: Extract of suitable fuses, e.g. Littelfuse fuses

Solar Module Ground at Positive Pole: Connecting Solar Module Strings with a Cable Cross Section > 16 mm²

General

The following steps are only necessary when the solar module manufacturer requires a solar module ground at the negative pole.

As an option, you can also connect DC cables to the inverter with a cross section > 16 mm^2 , e.g., when the DC cables from the solar modules are combined outside of the inverter into a large string.

Additional com-
ponents requiredThe following additional components are required for connecting DC cables with a cross
section > 16 mm²:

- 2 M32 metric screw joints (degree of protection min. IP45)
- 2 connection distributors

*)

Metric screw joints and connection distributors are available from Fronius as an option.

- 2 M10 cable lugs

Select cable lugs that match the available DC cables

2 M10 hexagon nuts

Solar module ground at positive pole: Connecting solar module strings with a cable cross section > 16 mm²

After disconnecting the DC main switch cables:

- Connect the DC+ cable to the DC- connection as per step 5
- Connect the DC- cable to the DC+ connection as per step 5
- Identify the reversed polarity with (+) and (-) according to steps 6 and 7

B

CAUTION! Danger of damaging the inverter by overload.

- Connect the DC+ cable to the right connection block of the inverter's DC terminals.
- Connect the DC- cable to the left connection block of the inverter's DC terminals.
 - Identify the reversed polarity with (+) and (-) according to step 14

Tightening torque of terminals: 1.2 - 1.5 Nm Tightening torque of hexagon nut on the connection distributor: max. 15 Nm

Tightening torque of terminals: 1.2 - 1.5 Nm Tightening torque of hexagon nut on the connection distributor: max. 15 Nm

IMPORTANT!

- Set the jumper from the 'SM_{ON}' position to the 'SM_{OFF}' position for correct measurement results
- Check the polarity and voltage of the DC cables strings: The voltage should be a max. of 600 V.

IMPORTANT! When using connection distributors, insert 6 metal bolts with fuse covers in the fuse holders. The metal bolts are included in the Fronius IG Plus scope of delivery.

Solar Module Ground at Positive Pole for Fronius IG Plus

General

Some manufacturers of solar modules stipulate that the module must be grounded.

IMPORTANT: Take into account the following points if a solar module ground is required:

- Specifications of the solar module manufacturer regarding polarity and required type of solar module ground
- National provisions

Solar Module Ground at Positive Pole

Example: Solar module ground at positive pole with fuse or high ohm resistor

- (1) Solar module
- (2) Inverter
- (3) Fuse / High ohm resistor

Solar Module Ground at Positive Pole for Fronius IG Plus You can ground solar modules in the Fronius IG Plus using a fuse or a high ohm resistor.

Fuse holder on the Fronius IG Plus for the solar module ground

Fronius recommends a fuse with 1 A and a dimension of 10×38 mm for solar module grounding.

For solar module grounding using a high ohm resistor, Fronius exclusively recommends the "100 kohm Grounding Kit" option. **WARNING!** An electric shock can be fatal. Danger from DC voltage from solar modules. The inverter's insulation monitoring is deactivated when the solar modules are grounded.

- Ensure that grounded solar modules are designed so that they are isolated according to Protection Class II
- Place the relevant safety sticker in a clearly visible place on the photovoltaic system
- Set the inverter so that an error message is displayed if the fuse trips.

Safety Label for the Solar Module Ground

IMPORTANT: Safety labels and the fuse for solar module grounding are not included in the inverter scope of delivery, and must be obtained separately.

Setting inverters for grounded solar modules

When solar modules are grounded, the inverter's insulation monitoring is deactivated. For this reason, you must make a setting in the 2nd level of the Setup menu so that an error message is displayed or the inverter turns off when the ground fuse is blown (depending on the country setup).

A code is required to access the 2nd level of the Setup menu. This code can be obtained from Fronius. Additional information regarding accessing the 2nd level of the Setup menu will be provided along with the code.

Solar Module Ground: Inserting Fuse or "100 kohm Grounding Kit" Option

- **NOTE!** If the solar module manufacturer requires a ground for solar modules at the positive pole:
 - Insert the "100 kohm Grounding Kit" option into the fuse holder completely with the plastic jacket
 - Do not operate the inverter without the plastic jacket when using the "100 kohm Grounding Kit" option

or

- Insert the fuse with a fuse cover in the fuse holder
- Do not operate the inverter without a fuse cover

WARNING! An electric shock can be fatal. Danger from DC voltage from solar modules. Fuse covers are for installation purposes only. They offer no protection against contact.

The DC main switch is only used to switch off power to the power stage set. When the DC main switch is turned off, the solar module ground at the negative pole remains unaffected. Never touch the DC+ and DC-.

Inserting a fuse:

*) The plastic bolts are included in the inverter scope of delivery

Inserting the "100 kohm Grounding Kit" option:

*) Remove standard fuse holder with plastic bolt

Fronius recommends a fuse with 1 A and a dimension of 10×38 mm for solar module grounding.

Insert the "100 kohm Grounding Kit" option into the fuse holder completely with the plastic jacket

Inserting the fuse will ground the solar module at the positive pole.

Inserting the "100 kohm Grounding Kit" option grounds the solar module at the positive pole via a high ohm resistor.

Procedure for opening the inverter for service or maintenance:

Opening Fronius IG Plus for Service/Maintenance

Disconnect AC and DC supply from the inverter

- 2 Open the connection area
- 3 Turn off DC main switch
- Allow the capacitors to discharge (5 minutes)
- 5 Remove metal covers
- [6] If present, remove the fuse for the solar module ground
- If present, remove string fuses
- B Disconnect DC wire
- 9 Disconnect AC wire

Closing Fronius IG Plus

ঁণ্ণ

Inserting Option Cards

Suitable Option Cards

There are several options and system upgrades available for the inverter, e.g.:

- Datalogger and modem interfaces (for using a PC to record and manage data from
- your photovoltaic system)
- Various large displays (public display)
- Actuators / relays / alarms (signal card)

System upgrades come in the form of plug-in cards. The inverter can be equipped with three option cards.

Safety

WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules.

- The connection area should only be opened by a licensed electrician.
- Never work with live wires! Prior to all connection work, make sure that the AC and DC wires are not charged.

WARNING! An electric shock can be fatal. Danger from residual voltage from capacitors.

You must wait until the capacitors have discharged. Discharge takes 5 minutes.

NOTE! Follow general ESD precautions when handling option cards.

Inserting option cards into the **Fronius IG Plus**

IMPORTANT! When networking several DATCOM components, a termination plug must be placed on each free IN and/or OUT connection of a DATCOM component.

IMPORTANT! Close any unused openings at the sealing insert using corresponding blanking plugs.

Data Communication and Solar Net

Salar Nat and					
Data Interface	Fronius developed Solar Net to make these add-on system components flexible and ca- pable of being used in a wide variety of different applications. Solar Net is a data network which enables several inverters to be linked with the system upgrades.				
	Solar Net is a bus system. A single cable is all that is required for one or more inverters to communicate with all system upgrade components.				
	The core of the Solar Net is the Fronius Datalogger. It coordinates the data traffic and makes sure that even large volumes of data are distributed quickly and reliably.				
	The 'Fronius COM Card' option is required to integrate an inverter into Solar Net.				
	Important Every inverter that is to be monitored using a Datalogger requires a 'Fronius COM Card.' In this case, the 'Fronius Com Card' serves as a link between the internal network of the inverter and the Solar Net interface of the Fronius Datalogger.				
	Important Each inverter can only have one 'Fronius Com Card.' A network may only con- tain one Fronius Datalogger.				
	The first inverter with a 'Fronius COM card' can be up to 1000 m (3280 ft) away from the last inverter with a 'Fronius COM card.'				
	Different system upgrades are detected automatically by Solar Net.				
	In order to distinguish between several identical system upgrades, each one must be as- signed a unique number.				
	In order to uniquely identify each inverter in Solar Net, each inverter must also be as- signed an individual number. You can assign individual numbers as per 'The Setup Menu' section in this manual.				
	More detailed information on the individual system upgrades can be found in the relevant operating instructions or on the Internet at http://www.fronius.com.				

Example Logging and archiving inverter and sensor data using a Fronius Datalogger and Fronius Sensor Box:

= Terminating plug

Illustration explanation: Data network with 3 Fronius IG Plus units and one Fronius Sensor Box:

- all Fronius IG Plus units have one 'Fronius COM Card'
- one Fronius IG Plus has a 'Fronius Datalogger Card' (no. 2)
- Fronius Datalogger has two RS-232 interfaces for connecting to a PC and a modem

Option cards communicate within the Fronius IG Plus via its internal network. External communication (Solar Net) takes place via the 'Fronius Com Cards.' Each 'Fronius Com Card' is equipped with two RS485 interfaces - an input and an output. RJ45 plug connectors are used to connect to these cards.

Commissioning

Factory Configuration

The inverter has been pre-configured in the factory and is ready for operation.

To change your inverter settings, please see "The Setup Menu" section in these instructions.

Start-up operation

Once the inverter has been connected to the solar modules (DC) and the public grid (AC), turn the main switch to position - 1 -.

NOTE! Regardless of whether bolts or fuses are used, do not operate the inverter without fuse covers.

NOTE! To ensure the degree of protection at the inverter:

- Insert blanking plugs into all openings at the sealing insert in which there are no cables
- If cables are run through the sealing insert, insert the remaining blanking plugs in the recesses located on the outside

- As soon as the photovoltaic modules produce sufficient power, the Operating Status LED lights up orange. The screen displays the startup phase. The orange LED indicates that the feed-in mode of the inverter will begin shortly.
- After the automatic inverter start, the Operating Status LED lights up green.
- Provided that power continues to feed into the grid, the Operating Status LED will remain green to confirm that the inverter is functioning correctly.

Setting Inverters for Available Solar Module Ground

NOTE! If a solar module ground is used, the corresponding grounding mode must be set in the 'Basic Service Menu' after the inverter is turned on.

A 5-character access code is required to access the 'Basic Service Menu.' This access code will be provided by Fronius upon request.

If a solar module ground is being used, the status message 502 "Insulation value too low" will be displayed after the inverter is turned on and upon completion of the startup phase.

Tota

Total

Esc

Setur

NI I

I► Setup ◄I

0

Now

Now I

80 60 40 Dav

Dav

1

NEG = solar module ground at negative pole

POS = solar module ground at positive pole

-100 kohm = solar module ground at negative pole using high ohm resistor

- +100 kohm = Solar module ground at positive pole using high ohm resistor
- Press the "Enter" key to apply the required grounding mode
- Press the "Esc" key to exit the Basic Service menu

Operation

Product Description Fronius IG Plus

Display The display unit's power is supplied via the safety-low voltage of the solar modules, which means that the display unit can be used only in the daytime.

IMPORTANT! The inverter display is not a calibrated measuring instrument. A slight inaccuracy of a few percent is intrinsic to the system. A calibrated meter will be needed to make calculations for the power supply company.

ltem	Function
(1)	Icons for the "Now" display mode
(2)	Icons for the "Day" display mode
(3)	Icons for the "Year" display mode
(4)	Icons for the "Total" display mode
(5)	Icons for the "Setup" display mode
(6)	Icons for operating conditions

(6) Icons for operating conditions

Max The value shown represents the maximum value within the period of observation (depending on which display mode is selected).

Min

The value shown represents the minimum value within the period of observation (depending on which display mode is selected).

Important The minimum and maximum values displayed do not represent the absolute extreme values, because data are recorded only at two-second intervals.

 \ldots appears when values are displayed which are directly associated with the solar modules

=/

... appears when values are displayed which are directly associated with the public grid

... appears with data readings that are directly related to the inverter

(7)	Range for display unit for displaying the applicable measuring unit	
(8)	Icon for the "Enter" key	
(9)	Icons for the "Menu/Esc" key	
(10)	Icons for the "Down/Right" key	
(11)	Icons for the "Left/Up" key	
(12)	Range for display value for displaying the value	

(13) Output bar (not active during setup) indicates the output power fed into the grid at a given moment - regardless of the display mode chosen. The screen displays % of the maximum possible output power of your solar inverter

Operating Status LED

Position of Operating Status LED on the inverter

Depending on the operating status, the Operating Status LED assumes different colors:

Operating Status LED	Explanation
Steady green	The LED stays lit after the automatic startup phase of the invert- er as long as power is being fed into the grid. It indicates problem-free operation of the photovoltaic system.
Flashing green	The photovoltaic system is working correctly, a status code is on the display.
	When a status code is shown, rectify the relevant condition by going to the "Maintenance and Service" chapter, "Status Diagnosis and Troubleshooting" section. The status code can be acknowledged by pressing the "Enter" key.
Steady orange	The inverter enters an automatic startup phase as soon as the solar modules are delivering sufficient power after sunrise.
Flashes orange	A warning is shown on the display
	or the inverter has been set to standby operation in the Setup menu (= manual shutoff of operation).
	The next day, operation will resume automatically.
	During the time the LED flashes orange, operation can be re- sumed manually at any time (see section "The Setup Menu")
Steady red	General status: the respective status code is shown on the screen
Remains dark	There is no connection to the solar modules, no solar module power due to darkness.

A list of most status codes, the corresponding status information, their status causes and repair measures can be found in the chapter "Troubleshooting and Maintenance," section "Status Diagnosis and Troubleshooting."

Startup Phase and Grid Feed-in Mode

Startup phase

The inverter carries out a self test after being turned on automatically. Then a test of the public grid is carried out. This test can take from several seconds up to several minutes depending on local regulations. During the startup sequence the illumination of the Operating Status LED is orange.

Test Procedure

Segment test

1.

All display elements light up for about one second

- 2. Self test of important inverter components
 - The inverter goes through a master check list for several seconds
 - The display will show "TEST" as well as the component currently being tested (e.g., "LED")

- 3. Synchronization with grid:
 - "WAIT PS" is displayed, the inverter icon flashes: The inverter waits for all power stage sets on the grid to be operational. This procedure is dependent on the DC voltage.

Next, the display shows "SYNC AC," the grid icon flashes

- 4. Startup test
 - Before the inverter begins feeding power into the grid, grid conditions are tested according to local regulations.
 - The display shows "START UP"

8

The startup test can take anything from just a few seconds up to several minutes depending on national regulations. The time elapsed is indicated by a bar shrinking from the top down.

Whenever two scale divisions stop flashing and disappear, 1/10 of the total duration of the test is over.

Operation of Feeding Energy into the Grid

-

-

- Once the tests have been completed, the inverter starts feeding power into the grid.
- The display shows the present power feeding into the grid.
 - The Operating Status LED lights up green, and the inverter starts operating.

Navigation in the Menu Level

Activating display illumination	IPress any keyThe display illumination is activated.			
	If no key is pressed for 30 seconds, the display backlight goes out (provided that the display illumination is set to automatic in the Setup menu).			
	The Setup menu also offers a choice between a permanently lit or permanently dark display.			
Automotic quitab	If no key is pressed for 2 minutes			
Automatic switch to the "Now" dis- play mode or the startup phase	 While power is being fed into the grid, the inverter automatically switches to the "Now" display mode and the present output power is displayed. If the inverter is not feeding power into the grid, the inverter automatically switches to the startup phase for synchronization with the grid. 			
	The inverter switches to the "Now" display mode or startup phase from anywhere with- in the display modes or the Setup menu.			
Accessing the	Press the "Menu" key (1)			
Menu Level				

"Menu" will appear on the display

The inverter is now in the menu level.

From the menu level you can

- set the desired display mode
- access the Setup menu

The Display Modes

The Display Modes	"Now" display mode	 Displays real-time values
	"Day" display mode	 Displays values for power fed into the grid during that day
	"Year" display mode	 Displays values for the present calendar year - only avail- able in combination with optional Fronius Datalogger
	"Total" display mode	 Displays values for power fed into the grid since the in- verter was started for the first time

IMPORTANT! The "Year" menu option is supported only when the optional Fronius Datalogger is connected. This system upgrade includes a real-time clock.

Overview of Dis- play Values	Display mode	Symbol	Unit	Optional	Display value
	"Now"	-€	W	-	Output power

Now

I► Day <I Year

Tota

Setup

(|,||-{|

0

Display mode	Symbol	Unit	Optional	Display value
	-	V	-	Grid voltage
	-	А	-	Output current
	-	Hz	-	Grid frequency
		V	-	Solar module voltage
		А	-	Solar module current
		Mohm	-	Insulation resistance
		HH:MM	х	Time
"Day"	-	kWh / MWh	-	Energy fed into the grid
"Year"	-	Currency	-	Return
"Total"	-	kg / T	-	CO ₂ reduction
		W	-	Max. output power
	-	V	-	Maximum grid voltage
	-	V	-	Minimum grid voltage
		V	-	Maximum array voltage
	\mathbb{Z}	HH:MM	-	Service hours completed by the in- verter

х

Optional If the DatCom component for the required options is not available, the message "N.A." (not available) is shown.

Display Values in "Now" Display Mode

Selecting the "Now" Display Mode

Select the "Now" display mode

The first display value in the "Now" display mode appears

2 Use the "Down" (2) key to scroll to the next display value

Scroll back using the "Up" key (1)

Display values in the "Now" display mode

Output power Power (in watts) currently being fed into the grid

The "Enter" key is active depending on the country setup or the device-specific settings.

- The present apparent power for the device can be displayed in VA by pressing the "Enter" key.
- The present operating mode can be displayed by pressing the "Up" and "Down" keys.

The "Enter" key can also be active if a Fronius Power Control Box is located in the Solar Net and power reduction has been triggered by the utility company.

- The power reduction is displayed as a % by pressing the "Enter" key.
- You can display how long the power reduction has been in effect by pressing the "Up" and "Down" keys.

In cases where both are occurring, you can display the apparent power by pressing the "Enter" key. Then you can scroll through the remaining parameters using the "Up" and "Down" keys.

- You can return to the menu level by pressing the "Menu" key.

For example, phase voltage for phase L1:

Grid voltage

inverters.

External conductor voltage (volts)

The "Enter" key is active for multi-phase

by pressing the "Enter" key.

The phase voltage can be displayed

WARNING! An electric shock can be fatal. The positive and negative poles of the photovoltaic system should never be touched with an insulation resistance of < 500 kohm. An insulation resistance of < 500 kohm may be due to an inadequately insulated DC lead or defective solar modules. In the event that the insulation resistance is too low, you must contact your Fronius service partner.

The insulation resistance is the resistance between the positive or negative pole of the photovoltaic system and the earth potential. If an insulation resistance > 500 kilohms is shown, this means that the photovoltaic system is adequately insulated.

An insulation resistance of less than 500 kilohms indicates an error.

When the insulation resistance is less than 10 megaohms, the display differentiates between:

- negative potential of the ground (polarity sign '-')
- positive potential of the ground (polarity sign '+')

Now I Day I Year I Total I Setup I	Time (datalogger option) When the time on the inverter or a system upgrade is changed, this changes the time on all devices connected via Solar Net.
I ▲ I ▼ I Menu I	GFDI = Ground Fault Detector Interruptor
Now I Day I Year I Total I Setup I	GFDI status For grounded solar modules If there is no ground fault in the system, "GFDI OK" is displayed
Now I Day I Year I Total I Setup I	Display example of a positive potential (polarity sign '+') Short circuit between DC+ lead and ground
Now I Day I Year I Total I Setup I	Display example of a negative potential (polarity sign '-') Short circuit between DC- lead and ground

Options

If the DatCom component for the required options is not available, the message "N.A." (not available) is shown.

Display Values in "Day / Year / Total" Display Modes

General For the inverter, the day begins when it switches on. If the DC supply line is disconnected, the following parameters within the "Day" display mode will be reset after repeating the startup:

- Return (currency can be selected)
- CO₂ reduction (kg)
- Maximum output power (watts)
- Maximum grid voltage (volts)
- Minimum grid voltage (volts)
- Service hours completed by the inverter

If an optional Fronius Datalogger is available, the display values listed always apply to the whole day.

Selecting "Day / Year / Total" Display Mode

First Display Value in the "Day" Display Mode:

First Display Value in the "Year" Display Mode:

First Display Value in the "Total" Display Mode:

Display values in the 'Day / Year / Total' display modes

Output energy Energy fed into the grid over the period of time in question (kWh / MWh)

Due to the variety of different monitoring systems, there can be deviations between the readings of other metering instruments and the readings from the inverter. For determining the energy supplied to the grid, only the readings of the calibrated meter supplied by the electric utility company are relevant.

Yield

Amount of money earned during the period of time in question (currency can be selected in the Setup menu)

As was the case for the output energy, readings may differ from those of other instruments.

'The Setup menu' section describes how to set the currency and rate for the output energy. The factory setting depends on the respective country-specific setting.

CO2 reduction

CO2 emissions saved during the monitored period (kg / T; T = tons) The area for unit display switches between 'kg' or 'T' and 'CO2.'

The CO2 meter gives an indication of CO2 emissions that would be released during the generation of the same amount of electricity in a combustion power plant. The factory setting is 0.59 kg / kWh (source: DGS - the German Society for Solar Energy).

Duration of operation is shown in hours and minutes up to 999 h and 59 min (display: '999:59'). After that only full hours are displayed.

Although the inverter does not operate during the night, all sensor data are recorded around the clock.

Options

If the DatCom component for the required options is not available, the message "N.A." (not available) is shown.

The Setup Menu

Presetting

The inverter is pre-configured and ready to use. No manual control is necessary for feeding the power it generates into the grid.

The setup menu allows easy readjustment of the inverter's preset parameters to your needs.

Accessing the Setup Menu

- Switch to the menu level (press the "Menu" key)
- Select the "Setup" (1) mode using the "Left" (4) or "Right" (3) keys
- 3 Press "Enter" (2)

The Setup Menu's first menu item "STAND-BY" is shown.

Scrolling through Menu Items

Example: "STANDBY" menu item

1 Access the Setup menu

Scroll through the available menu items using the "Up" (1) and "Down" (2) keys
Menu Items in the Setup Menu

STANDBY

Manual activation / deactivation of Standby operation using the "Enter" key

Unit

Setting range

Factory setting

Automatic operation of feeding energy into the grid (Standby deactivated)

- The power electronics are switched off in standby mode. No power is fed into the grid.
 - The Operating Status LED flashes orange.

Enter

- The orange flashing Operating Status LED stops at dusk.
- After the subsequent sunrise, the power supply operation into the grid is resumed automatically (after completion of the startup phase the LED is illuminated green).
- Grid supply operation can be resumed at any time whenever the LED is flashing orange (deactivate "STANDBY").

If the Standby mode is activated by pressing the "Enter" key, the display alternates between "STANDBY" and "Enter:"

Now

.

Dav

Т

Year

Т

Т

Total

Esc

T

I► Setup ◄I

Enter

To maintain Standby operation:

- Press the "Esc" key

To end Standby operation:

- Press the "Enter" key

Contrast setting on LCD display

CONTRAST

Unit	-
Setting range	0 - 7
Factory setting	7

Since contrast depends on temperature, it may be necessary to adjust the "CONTRAST" menu item when ambient conditions change.

Initial setting for display illumination.

Unit	-
Setting range	AUTO / ON / OFF
Factory setting	AUTO
AUTO:	The display illumination will stop 30 seconds after the last time a key has been pressed.
ON:	The display will remain illuminated whenever power is supplied to the grid.
OFF:	The display illumination will be permanently off.

IMPORTANT! The "LIGHT MODE" setting only relates to the display's background illumination. The LCD display will still remain on during operation. Its energy consumption is less than one mW (1/1000 W).

CASH

I	Now	I	Day	Ι	Year	I	Total	►	Setup ∢I
100									
80					()				
60									
40									
20				· •		J /			
1				-					- ntor
			1	•	1 1	ienu			Enter

Sets the currency and charge rate for the output energy to the grid

Unit Display area Factory setting

Currency / Charge rate / kWh (depends on the country setting)

CO2

kg/kWh, T/kWh

00,01 - 99,99

0.59 kg/kWh

Unit Setting range Factory setting Setting of CO2 reduction factor

YIELD

Setting

- an OFFSET value for the total energy display
 - a measurement correction value for the Day, Year and Total energy display

Setting range

OFF SET / CALI.

8

OFF SET

Offset is an amount of energy (in Wh, kWh, or MWh) that can be added to the lifetime total energy output of the inverter to give it a 'head start.'

Unit	Wh / kWh / MWh
Setting range	5-digit + k / M
	1 kWh = 1000 Wh 1 MWh = 1000000 Wh
Factory setting	0

CALI.

Preset correction value, so that the data shown on the inverter display corresponds to the calibrated data shown on the electric meter

Unit	%
Setting range	-5.0 - +5.0 in increments of 0.1
Factory setting	0

IG no.

Number setting (address) of the inverter in a setup comprising multiple solar inverters linked together

Unit-Setting range01 - 99 (100th inverter = 00)Factory setting1

IMPORTANT! Each inverter must be assigned its own address when connecting several inverters in a data communications system.

DAT COM

Indicates status of data transmission, function test or activates and resets various option (e.g., Fronius Signal Card, Fronius Personal Display Card, Fronius Interface Card, Fronius TAC Card, etc.)

Setting range

Displays OK COM or ERROR COM; SIGCD TEST / PDCD RST / IFCD RST / TAC ON

OK COM / ERROR COM

Displays data communication available via Solar Net or an error that occurred in data communication

Examples of options:

SIGCD TEST

Function test for the Fronius Signal Card option

PDCD RST

Resets the Fronius Personal Display Card option

IFCD RST

Resets the Fronius Interface Card option

TAC ON

Function test for the Fronius Power Relay Card (TAC) option

TIME

Date and time setting

Unit	DDMMYYYY, HH:MM
Setting range	Date / Time
Factory setting	-

IMPORTANT! The "TIME" menu item is only supported when the Fronius Datalogger option is installed.

LIMIT CFG

Used to display settings relevant to a utility company. The displayed values depend on the respective country setup or device-specific inverter settings.

Display range

U IL Max / U IL/TRIP* Max / U IL Min / U IL/TRIP* Min / U OL Max / U OL/TRIP* Max / U OL Min / U OL/TRIP* Min / U RC Max / U RC Min / U LL FREQ IL Max / FREQ IL/TRIP* Max / FREQ IL Min / FREQ IL/ TRIP* Min / FREQ OL Max / FREQ OL/TRIP* Max / FREQ OL Min / FREQ OL/TRIP* Min / FREQ RE Max / FREQ RE Min START TIME/INIT* / START TIME/RCON* AGF / EMI COMP / MIX MODE

* alternating display, e.g.:

OL 'Outer Limit'

Different clearing times can be assigned to the inner limit IL and the outer limit OL depending on the country setup or device-specific settings. Example:

- Short clearing time for a deviation from the outer limit
- Longer clearing time for a deviation from the inner limit

U IL Max

Upper inner grid voltage limit in V

U IL/TRIP Max

Clearing time for exceeding the upper inner grid voltage limit in P**

U IL Min

Lower inner grid voltage limit in V

U IL/TRIP Min

Clearing time for falling below the lower inner grid voltage limit in P**

U OL Max

Upper outer grid voltage limit in V

U OL/TRIP Max

Clearing time for exceeding the upper outer grid voltage limit in P**

U OL Min

Lower outer grid voltage limit in V

U OL/TRIP Min

Clearing time for falling below the lower outer grid voltage limit in P**

U RC Max

"Reconnection"

Upper voltage limit for reconnecting to the public grid after disconnection due to an unacceptable parameter deviation

U RC Min

"Reconnection" Lower voltage limit for reconnecting to the public grid after disconnection due to an unacceptable parameter deviation

U LL

"Longtime Limit" Voltage limit in V for the voltage average determined over a longer time period

FREQ IL Max

Upper inner grid frequency limit in Hz

FREQ IL/TRIP Max

Clearing time for exceeding the upper inner grid frequency limit in P**

FREQ IL Min

Lower inner grid frequency limit in Hz

FREQ IL/TRIP Min

Clearing time for falling below the lower inner grid frequency limit in P**

FREQ OL Max

Upper outer grid frequency limit in Hz

FREQ OL/TRIP Max

Clearing time for exceeding the upper outer grid frequency limit in P**

FREQ OL Min

Lower outer grid frequency limit in Hz

8

FREQ OL/TRIP Min

Clearing time for falling below the lower outer grid frequency limit in P**

** P = grid periods; 1 P corresponds to 16.66 ms

FREQ RC Max

"Reconnection"

Upper grid frequency limit for reconnecting to the public grid after disconnection due to an unacceptable parameter deviation

FREQ RC Min

"Reconnection"

Lower grid frequency limit for reconnecting to the public grid after disconnection due to an unacceptable parameter deviation

START TIME/INIT

Startup time of the inverter in s

START TIME/RCON

Reconnection time in s after a grid error

AGF

"Advanced Grid Features"

Display range	Q MODE / GPIS / GFPR / FULL/LVRT
Q MODE	 Mode for reactive power specification CONST / COSP*** Constant cos phi specification CONST / Q REL*** Constant specification of the relative reactive power in % CONST / Q ABS*** Constant specification of an absolute reactive power in VA COSP (P) cos phi specification depending on the effective power Q (U) Relative reactive power specification regarding the current grid voltage Q (P) Relative reactive power specification depending on the ef- fective power OFF The inverter is operating in the pure effective power range (cos phi = 1)
GPIS	"Gradual Power Increment at Startup" Soft start function regarding how fast the inverter should in- crease the power ON / OFF / N.A.
GFPR	"Grid Frequency Depending Power Reduction" Power reduction depending on the grid frequency ON / OFF / N.A.

FULL / LVRT***

"Low Voltage Ride Through" Function for bridging a grid voltage gap that was caused by grid voltage parameters outside of the limits

EMI COMP

Compensation of the EMC filter during operation

ON / OFF / N.A.

MIX MODE

DC operating mode

- *** alternating display
- N.A. not available
- Press 'Enter' to display the respective value
- Press 'Esc' to exit the displayed value

STATE PS

Status display of power stage sets; the last error that has occurred can be displayed

IMPORTANT! Due to the low level of irradiance early in the morning and in the evening, the status codes 306 (power low) and 307 (DC low) are displayed routinely at these times of day. These status messages do not indicate any kind of fault.

VERSION

Displays the version number and serial number of electronic components (e.g., IG Brain, power stage sets, display, country setup)

Unit	-
Display area	MAIN CTRL / LCD / PS (PS00, PS01, PS02) / SETUP
Factory setting	-
MAINCTRI	Version data of IG Brain unit (inverter control)
LCD	Display version data
PS	Power stage set version data (PS00 - max. PS02)
SETUP	Display of current country setup The current country setup is displayed (2-3 letters) by pressing the "Enter" key, e.g., "DE" for Germany country setup; Exit the Country Setup display by pressing the "Esc" key

Setting and Displaying Menu Items

Setting Menu Items - General	Access the Setup menu Use the "Up" or "Down" keys to select the desired menu item Press the "Enter" key			
	The first digit of a value to be set flash- es:	The available settings are displayed:		
	 Use the "Up" and "Down" keys to select a value for the first digit 	 Use the "Up" and "Down" keys to select the desired setting 		
	5 Press the "Enter" key	5 Press the "Enter" key to save and ap-		
	The second digit of the value flashes.			
	6 Repeat steps 4 and 5 until	Press the "Esc" key to not save the selection.		
	the entire value flashes.			
	7 Press the "Enter" key			
	8 Repeat steps 4 - 6 for units or other values to be set until the unit or value flashes.			
	9 Press the "Enter" key to save and apply the changes.			
	Press the "Esc" key to not save the changes.			
	The currently selected menu item is displayed.	The currently selected menu item is displayed.		
Examples of Set- ting and Display- ing Menu Items	 The following examples describe how to set a Setting the Currency and Charge Rate Displaying and Setting Parameters in the Setting Time and Date 	and display menu items: e "DATCOM" Menu Item		
Setting the Cur- rency and Charge Rate	I Now I Day I Year I Total I► Setup ◀I a a a b a a a a b b c c c c c c c c c c c c c	 Select the "CASH" menu item Press the "Enter" key 		

 \circ

Available data connection

Data connection faulty or DATCOM is not installed

If there is a faulty data connection or options are not installed, "ERROR COM" is displayed.

 Select the respective option using the "Down" key

Date

Setup Lock function

General

The inverter comes equipped with the "Setup Lock" function. When the "Setup Lock" function is active, the Setup menu cannot be accessed, e.g., to protect against setup data being changed by accident.

You must enter code 12321 to activate / deactivate the "Setup Lock" function.

Activating/deactivating the "Setup Lock" function

"SETUP LOCK" is displayed.

8

8 Press the "Enter" key

Year

Tota

Setup 4

1

Now

I Day

"ON LOCK" is displayed.

Use the "Up" and "Down" keys to select the desired function

ON LOCK = "Setup Lock" function is activated (the Setup menu cannot be accessed)

OFF LOCK = "Setup Lock" function is deactivated (the Setup menu can be accessed)

8 Press the "Enter" key to apply the function

Troubleshooting and Maintenance

Status Diagnosis and Troubleshooting

Displaying Status Codes Your inverter is equipped with a self diagnostic system that automatically identifies a large number of possible operation issues by itself and displays them on the screen. This enables you to know immediately if there are any malfunctions in the inverter, the photovoltaic system or any installation or operating errors.

Whenever the self diagnostic system has identified a particular issue, the respective status code is shown on the screen.

IMPORTANT! Status codes may sometimes appear briefly as a result of the control response from the inverter. If it subsequently continues to operate normally, there has not been a system error.

Normal Operation Status Codes

The open circuit voltage of the solar modules is too low.

As soon as the open circuit voltage exceeds 265 V, the inverter starts synchronizing with the grid (display shows "SYNC AC").

The total power output of the solar modules is insufficient.

After a short time the inverter resumes grid synchronization (display shows "SYNC AC").

Total FailureIf the display remains dark for a long time after sunrise:
- Check the open circuit voltage of the solar modules at the connections of the inverter:
Open circuit voltage < 265 V ... error in the photovoltaic system
Open circuit voltage > 265 V ... may indicate a basic fault in the inverter. In this case,
notify a Fronius-trained service engineer.Status Codes on
Fronius IG Plus
with Several Pow-
er Stage SetsA special status diagnostic is run if an error occurs in an inverter with several power stage
sets.
It is also possible to call up status codes even if there is no actual error in existence. This
form of status polling may be found in the section "The Setup Menu."

Display during normal operation

When there is an error in one of the power stage sets, the display flashes between "STATE" and the corresponding status code (e.g., "STATE 515")

and

.

"ENTER"

- Press the "Enter" key twice

- The status display of the power stage sets "STATE PS" appears
- Press the "Enter" key

Class 1 Status Codes

1	Now	I	Day	I	Year	I	Total	I	Setup	I
100 80			T		1 7	- 1				
60 40		7	X	29			•	// \		
20		J						1)	ŇŇ	
I			I		I		I		Enter	

Class 1 status codes are typically temporary. Their cause lies in the public grid.

The initial response of the inverter is to disconnect itself from the grid. The grid is subsequently checked for the stipulated monitoring period. If after the end of this period no further defect is identified, your inverter resumes operating and feeding power into the grid.

IMPORTANT! The 2nd position x defines the exact network point for the following status codes:

0 = several / all 3 phases 1 = L1 2 = L2 3 = L3

1x2	
AC voltage too high	
Behavior	Grid conditions are thoroughly tested and as soon as they are again within the permissible range, the inverter will resume feeding power into the grid.
Remedy	Check grid connections and fuses Should the status code persist, you should contact your system installer
1x3	
AC voltage too low	
Behavior	Grid conditions are thoroughly tested and as soon as they are again within the permissible range, the inverter will resume feeding power into the grid.
Remedy	Check grid connections, breakers and disconnect Should the status code persist, you should contact your system installer
1x5	
AC frequency too high	
Behavior	Grid conditions are thoroughly tested and as soon as they are again within the permissible range, the inverter will resume feeding power into the grid.
Remedy	Check grid connections and fuses Should the status code persist, you should contact your system installer
1x6 AC frequency too low	
Behavior	Grid conditions are thoroughly tested and as soon as they are again within the permissible range, the inverter will resume feeding power into the grid.
Remedy	Check grid connections and fuses Should the status code persist, you should contact your system installer
1x7	
No AC grid detected	
Behavior	Grid conditions are thoroughly tested and as soon as they are again within the permissible range, the inverter will resume feeding power into the grid.
Remedy	Check grid connections and fuses Should the status code persist, you should contact your system installer
108	

Islanding detected

B

Behavior	Grid conditions are thoroughly tested and as soon as they are again within the permissible range, the inverter will resume feeding power into the grid.
Remedy	Should the status code persist, you should contact your system installer
109	
General grid error This error is always displ grid error is specified in r 2 phases report "104" ar	ayed first for grid errors. After reviewing all power stage sets, the nore detail: 1x1 / 1x4 or the display remains at "109" (e.g., when nd one phase "101")
Behavior	Grid conditions are thoroughly tested and as soon as they are again within the permissible range, the inverter will resume feeding power into the grid.
Remedy	Check grid connections and fuses Should the status code persist, you should contact your system installer

Class 3 status codes

_										_
1	Now	Т	Day	Т	Year	Т	Total	Т	Setup	I
100										
80					/ /					
60			<u> </u>			- V	•	_		
40		1		۲ ٦			-	71	\sqrt{V}	
20	_	J	- /				_	٦/	$\Lambda \Lambda$	
Ι.										
11			1		I		1		Enter	
										_

Class 3 comprises status codes that may appear during feed-in operation and that do not cause a permanent interruption of the operation of feeding power into the grid.

After automatic disconnection from the grid and waiting for its conditions to return to those stipulated, your inverter will try to resume feed-in operation.

301	
Overcurrent (AC)	
Description	Short interruption of power feeding into the grid due to overcur- rent. The inverter returns to the startup phase.
D	
Remedy	Fault is rectified automatically If this status code keeps recurring, contact your system installer
302	
Overcurrent (DC)	
Description	Short interruption of power feeding into the grid due to overcur- rent. The inverter returns to the startup phase.
Remedy	Fault is rectified automatically If this status code keeps recurring, contact your system installer
303	

Over-temperature buck converter

Description	Short interruption of power feeding into the grid due to over- temperature. The inverter returns to the startup phase.
Remedy	Fault is rectified automatically If this status code keeps recurring, contact your system installer
304	
Over-temperature coolin	g element
Description	Short interruption of power feeding into the grid due to over- temperature. The inverter returns to the startup phase.
Remedy	Fault is rectified automatically If this status code keeps recurring, contact your system installer
305	
No power transfer to grid	d possible
Description	Continual interruption of grid feed operation
Remedy	Should the status code persist, you should contact your system installer
'POWER LOW' (306)	
Intermediate circuit volta This error is shown on th	ge has dropped below permissible threshold value for feed in. he inverter in plain text.
Description	Short interruption of power feeding into the grid. The inverter returns to the startup phase.
Remedy	Fault is rectified automatically If this status code keeps recurring, contact your system installer
'DC LOW' (307)	
DC input voltage is too lo This error is shown on th	ow for feed in. ne inverter in plain text.
Description	Short interruption of power feeding into the grid. The inverter returns to the startup phase.
Remedy	Fault is rectified automatically If this status code keeps recurring, contact your system installer
308	
Intermediate circuit volta	ge too high.
Description	Short interruption of power feeding into the grid. The inverter returns to the startup phase.
Remedy	Fault is rectified automatically If this status code keeps recurring, contact your system installer

Class 4 status codes may require the intervention of a trained Fronius service technician.

401

No internal communication with power stage set

Description	The inverter will automatically attempt to connect again and, if possible, resume feeding power into the grid
Remedy	Check grid connections and fuses If status code persists: Contact a Fronius-trained service tech- nician
402	
Communication with EE	PROM not possible
Description	The inverter will automatically attempt to connect again and, if possible, resume feeding power into the grid.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician
403	
EEPROM faulty	
Description	The inverter will automatically attempt to connect again and, if possible, resume feeding power into the grid.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician
406	
One or both temperature	e sensors are defective
Description	The inverter disconnects from the grid for safety reasons.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician
407	
Temperature sensor at c	cooling element defective
Description	The inverter disconnects from the grid for safety reasons.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician
408	
Direct current feed in	
Description	The inverter disconnects from the grid for safety reasons.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician

The "fixed voltage" setting has been selected instead of MPP voltage operation and the voltage is set to too low a value, or DC voltage exceeds allowable limits.

Description	Fixed voltage lower than the current MPP voltage.		
Remedy	Remove excess solar modules so DC voltage fits within inverter limits		
	If the status code persists: Contact a Fronius-trained service technician		
413			
Control problems			
Description	The inverter briefly disconnects from the grid if AC voltage or frequency are out of range.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
414 EEPROM faulty			
Description	Memory deleted		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
416			
Communication with IG	Brain not possible.		
Description	The Operating Status LED lights up orange, then the inverter at- tempts a restart.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
417			
Two power stage sets I	have the same PC board number		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
419			
Two or more power sta	ge sets with an identical software serial number detected.		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
101			

PC board number has been set incorrectly

Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
425			
Communication with the	e power stage set is not possible		
Description	The Operating Status LED lights up orange, then the inverter at- tempts a restart.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
431			
All power stage sets are	e in boot mode		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	Update firmware using Bootloader or Fronius Solar.update/IG Plus		
Switches between SL	AVE / DC LOW or SLAVE / POWER LOW (439)		
The MPP master power stage set (in the balance	r stage set is switched off because of an error in a slave power e mode).		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
Switches between SL	AVE / DC LOW or SLAVE / POWER LOW (439)		
The MPP master power fuse.	r stage set is switched off because of a fauilty GFDI grounding		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	Check the GFDI grounding fuse and replace it, if necessary. If status code persists: Contact a Fronius-trained service technician		
442			
No phase master for a	phase		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
443			

Energy transfer not possible

Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
445			
Invalid power stag	e set configuration		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
450			
The monitoring of	the power stage set main processor 'Guard' is active		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
451			
The EEPROM Gu	ard Control is defective		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
452			
Communication be rupted	etween 'Guard' and the digital signal processor (DSP) has been inter-		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
453			
Error in grid voltag	ge recording		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	If status code persists: Contact a Fronius-trained service tech- nician		
454			
Error in grid freque	ency recording		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		

Remedy	If status code persists: Contact a Fronius-trained service tech- nician
455	
Reference power source	for AC measurement is operating outside of tolerances
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician
456	
Error during anti-islandin	ng test
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician
457	
Grid relay stuck	
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician
460	
Reference power source erances	for the digital signal processor (DSP) is operating outside of tol-
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician
461	
Error in DSP data memo	ry
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.
Remedy	If status code persists: Contact a Fronius-trained service tech- nician
464	
Display error The software and/or hard	dware versions of the display and IG Brain are not compatible.
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.
Remedy	Update firmware using Bootloader or Fronius Solar.update/IG Plus

465

Display error

· · · · · · · · · · · · · · · · · · ·		
The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
If status code persists: Contact a Fronius-trained service tech- nician		
ected.		
The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Check the display for damage, connect display, check ribbon wire for damage, check IG Brain for damage If status code persists: Contact a Fronius-trained service tech- nician		
eived a start command from the IG Brain for longer than 6 s.		
The inverter will automatically attempt to connect again and, if possible, resume feeding power into the grid.		
If status code persists: Contact a Fronius-trained service tech- nician		
d to wrong poles		
The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Properly connect output choke If status code persists: Contact a Fronius-trained service tech- nician		
y does not open at high DC voltage		
The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Check system configuration If status code persists: Contact a Fronius-trained service tech- nician		

471

Defective fuse for solar module ground has not yet been replaced. This status code is displayed when the fuse for the solar module ground has not been replaced after a specific period of time after the status code 551 is displayed.

Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	Insert new fuse for the solar module ground so that the solar modules are grounded at the negative or positive pole. Fault is rectified automatically If this status code keeps recurring, contact your system installer		
474			
Short circuit between DC High ohm resistor for sol	connection and ground (external insulation fault) ar module ground is defective		
Description	The inverter stops feeding power into the grid, the display shows a critical error via a red Operating Status LED.		
Remedy	Insert new high ohm resistor for solar module ground. Remedy external insulation fault Fault is rectified automatically If this status code keeps recurring, contact your system installer		
475			
DC insulation fault The insulation value of th	ne DC terminals to the protective earth (PE) is \leq 500 kilohms		
Description	The inverter interrupts feed-in operation		

Remedy	Correct insulation fault	

Class 5 status codes

Class 5 status codes generally do not impair the operation of feeding power into the grid. They will be displayed until the status code is acknowledged by pressing a key (the inverter, however, continues working normally in the background).

- press any key
- error message disappears

502

DC insulation fault

Description	While automatically measuring the insulation, the inverter has detected an insulation fault to the ground.	
Remedy	Check the insulation of your photovoltaic system The status code reappears: contact your system installer	
504		
No Solar Net communication possible		
Description	Inverter address issued twice.	

Remedy Change inverter address (section: 'The Setup menu')

Description	The Solar Net components required are in the inverter: Howev- er, communication is still not currently possible.	
Remedy	Status code will disappear after changing the inverter address	
505		
EEPROM faulty		
Description	Data from the Setup menu are lost.	
Remedy	Remedied automatically	
506		
EEPROM faulty		
Description	Data from the 'Total' menu are lost.	
Remedy	Remedied automatically	
EEPROM faulty		
Description	Data from the 'Day' / 'Year' menu are lost.	
Remedy	Remedied automatically	
SUB Inverter address inco	rrect	
Description	Address for data communication is no longer saved.	
Remedy	Set address again	
509		
24h no feed in		
Description	Example: solar modules covered with snow	
Remedy	Example: remove snow from solar modules	
510 EEPROM faulty		
Description	SMS settings were restored to default.	
Remedy	If necessary, reconfigure SMS	
511		
EEPROM faulty		
Description	Sensor card settings were restored to default	
Remedy	If necessary, reconfigure measuring channels	
512	and the support	

Too many power stage sets in the system

Description	Too many power stage sets have been detected in the system. If status code persists: Contact a Fronius-trained service tech- nician	
Remedy		
513		
Power stage set in boo	bt mode	
Description	One or more power stage sets cannot be activated, because they are in boot mode.	
Remedy	Update power stage set firmware	
514		
No communication with	h one of the power stage sets	
Description	Warning message from one of the power stage sets, second power stage set working normally	
Remedy	If status code persists: Contact a Fronius-trained service tech- nician	
515		
Faulty plug connection	S	
Description	Temperature sensor on cooling element faulty or not connected properly.	
Remedy	If status code persists: Contact a Fronius-trained service tech- nician	
516		
Status codes present f	or one of the power stage sets.	
Description	It is not possible to activate all power stage sets	
Remedy	Carry out analysis. For more information, see the 'The setup menu' section. If status code persists: Contact a Fronius-trained service technician	
517		
Change of master has	taken place.	
Description	Transformer not connected / not plugged in Bridge short-circuit Detection of intermediate circuit voltage damaged	
Remedy	Check possible errors referred to in 'Description.' If status code persists: Contact a Fronius-trained service technician	
550		
String fuse defective.		
Description	One or more string fuses are defective.	
Remedy	Test string fuses and replace any that are defective	
-		

550

Jumper	set	incorrectly
--------	-----	-------------

Description	The jumper on the C-Box PC board was not reset to the 'SMon' position after the solar module strings were checked			
Remedy	Set the jumper on the C-Box PC board to the 'SMon' position			
551				
Fuse for solar module ground is defective				
Description	The fuse for the solar module ground is defective, replace the fuse to protect the solar module.			
Remedy	Insert new fuse for the solar module ground so that the solar modules are grounded at the negative or positive pole. Fault is rectified automatically If this status code keeps recurring, contact your system installer			
553				
Phase master deactivated due to frequently occurring errors				
Description	A reintegration of the power stage set into the Mix network will be attempted at a later time.			
Remedy	If status code persists: Contact a Fronius-trained service tech- nician			
558				
Feature deactivated (e.ç	g., inverter control via the Fronius Power Control Box option)			
Description	A feature had to be deactivated (e.g., after component replace- ment). The status code is no longer displayed after the next DC discon- nect.			
Remedy	Confirm error, update firmware using Bootloader or Fronius So- lar.update/IG Plus, if required (The inverter will also operate problem-free without updating the firmware)			
559				
"Low Voltage Ride Through" event				
Description	Grid voltage parameters outside of the limits have caused a grid voltage gap. The inverter attempts to bridge the grid voltage gap.			
Remedy	Fault is corrected automatically when grid parameters return to normal If this status code keeps recurring, contact your system installer			
560				
Power reduction due to	over-frequency			
	· •			

Description The inverter reduces output power due to excessive grid frequency in order to stabilize the grid.

Remedy	Fault is corrected automatically when the grid frequency returns to normal If this status code keeps recurring, contact your system installer	
561		
Power reduction due to excessive power stage set temperature		
Description	The inverter reduces output power due to excessive ambient temperature.	
Remedy	Error is corrected automatically after cooling down	

Customer Service IMPORTANT! Please contact your Fronius dealer or a Fronius-trained service technician if

- an error appears frequently or for a long period of time
- an error appears that is not listed in the tables
Maintenance

Safety

WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules.

- The connection area should only be opened by a licensed electrician.
- The separate power stage set area should only be disconnected from the connection area after first being disconnected from the grid power.
- The separate power stage set area should only be opened by Fronius-trained service personnel.

Never work with live wires! Prior to all connection work, make sure that the AC and DC wires are not charged.

The DC main switch is only used to switch off power to the power stage set. When the DC main switch is turned off, the connection area is still energized.

WARNING! An electric shock can be fatal. Danger from residual voltage from capacitors.

You must wait until the capacitors have discharged. Discharge takes 5 minutes.

When operating the inverter in extremely dusty environments: Remove the fan cover and clean the integrated fly screen as required

Opening Fronius IG Plus for Service/Maintenance

Procedure for opening the inverter for service or maintenance:

Disconnect AC and DC supply from the inverter

- 2 Open the connection area
- 3 Turn off DC main switch
- Allow the capacitors to discharge (5 minutes)

5 Remove metal covers

- 6 If present, remove the fuse for the solar module ground
- [7] If present, remove string fuses

Replacing String Fuses

Safety

Preparation

WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules.

- The connection area should only be opened by a licensed electrician.
- The separate power stage set area should only be disconnected from the connection area after first being disconnected from the grid power.
- The separate power stage set area should only be opened by Fronius-trained service personnel.

Never work with live wires! Prior to all connection work, make sure that the AC and DC wires are not charged.

The DC main switch is only used to switch off power to the power stage set. When the DC main switch is turned off, the connection area is still energized.

WARNING! An electric shock can be fatal. Danger from residual voltage from capacitors.

You must wait until the capacitors have discharged. Discharge takes 5 minutes.

Replacing Fuses

Test the fuse holder at the terminal for continuity

NOTE! Only use fuses for solar modules that meet the criteria for the proper selection of string fuses.

Fuse dimensions: Diameter 10.3 x 35 - 38 mm

After replacing the fuse:Find out and correct the cause for the defective fuse

Appendix

Technical Data

Fronius IG Plus

30 V

Input data

Protection against reverse polarity

Manifestation of DC overload

MPP voltage range	230 - 500 V DC
Max. input voltage (at 1000 W/m² / -10 °C in an open circuit)	600 V DC
Max. input current	13.8 A DC
Output data	
Nominal output power (P _{nom})	3.0 kW
Max output power	3.0 kW
Nominal AC output voltage	1 ~ NPE 230 V
Grid voltage tolerance	+10 / -15 % ¹⁾
Nominal output current (single phase)	13.0 A AC
Nominal frequency	50 - 60 Hz ¹⁾
Harmonic distortion	< 3,0 %
Power factor (cos phi)	1 0.85 - 1 ind./cap. ³⁾
Max. permitted grid impedance Zmax at I	PCC ²⁾ None
General data	
Maximum efficiency	95,7 %
Euro. efficiency	94,8 %
Night consumption	0.23 W
Cooling	Controlled forced-air ventila- tion
Degree of protection	IP 54 in Australia, IP 44
Dimensions h x w x d	673 x 434 x 250 mm
Weight	23.8 kg
Permissible ambient temperature (with 95% rel. humidity)	- 20 °C - +55 ?
EMC emissions class	В
Over-voltage category (OVC)	AC 3 / DC 2
Safety equipment	
DC insulation measurement	Warning / Shutdown ⁴⁾ at R _{ISO} < 500 kilohms
DC over-voltage protection	integrated

integrated

Operating point shift

Input data

MPP voltage range230 - 500 V DCMax. input voltage
(at 1000 W/m² / -10 °C in an open circuit)600 V DCMax. input current16.2 A DC

Output data

3.5 kW
3.5 kW
1 ~ NPE 230 V
+10 / -15 % ¹⁾
15.2 A AC
50 - 60 Hz ¹⁾
< 3,0 %
1
0.85 - 1 ind./cap. ³⁾
None

Maximum efficiency	95,7 %
Euro. efficiency	95,0 %
Night consumption	0.23 W
Cooling	Controlled forced-air ventila- tion
Degree of protection	IP 54 in Australia, IP 44
Dimensions h x w x d	673 x 434 x 250 mm
Weight	23.8 kg
Permissible ambient temperature (with 95% rel. humidity)	- 20 °C - +55 ?
EMC emissions class	В
Over-voltage category (OVC)	AC 3 / DC 2
Safety equipment	

DC insulation measurement	Warning / Shutdown ⁴⁾ at R _{ISO} < 500 kilohms
DC over-voltage protection	integrated
Protection against reverse polarity	integrated
Manifestation of DC overload	Operating point shift

MPP voltage range	230 - 500 V DC
Max. input voltage (at 1000 W/m² / -10 °C in an open circuit)	600 V DC
Max. input current	18.6 A DC

Output data

Nominal output power (P _{nom})	4 kW
Max output power	4 kW
Nominal AC output voltage	1 ~ NPE 230 V
Grid voltage tolerance	+10 / -15 % ¹⁾
Nominal output current (single phase)	17.4 A AC
Nominal frequency	50 - 60 Hz ¹⁾
Harmonic distortion	< 3,0 %
Power factor (cos phi)	1
	0.85 - 1 ind./cap. ³⁾
Max. permitted grid impedance Zmax at PCC ²⁾	261 megaohms

Maximum efficiency	95,7 %
Euro. efficiency	95 %
Night consumption	0.23 W
Cooling	Controlled forced-air ventila- tion
Degree of protection	IP 54
	in Australia, IP 44
Dimensions I x w x h	673 x 434 x 250 mm
Weight	23.8 kg
Permissible ambient temperature (with 95% rel. humidity)	- 20 °C - +55 ?
EMC emissions class	В
Over-voltage category (OVC)	AC 3 / DC 2
Safety equipment	

DC insulation measurement	Warning / Shutdown ⁴⁾ at R _{ISO} < 500 kilohms
DC over-voltage protection	integrated
Protection against reverse polarity	integrated
Manifestation of DC overload	Operating point shift

Input data

MPP voltage range230 - 500 V DCMax. input voltage
(at 1000 W/m² / -10 °C in an open circuit)600 V DCMax. input current30 A DC

Output data

Nominal output power (P _{nom})	6.5 kW
Max output power	6.5 kW
Nominal AC output voltage	1 ~ NPE 230 V 2 ~ NPE 400 / 230 V
Grid voltage tolerance	+10 / -15 % ¹⁾
Nominal output current single phase two-phase	28.3 A AC 14.1 A AC
Nominal frequency	50 - 60 Hz ¹⁾
Harmonic distortion	< 3,0 %
Power factor (cos phi)	1 0.85 - 1 ind./cap. ³⁾
Max. permitted grid impedance Zmax at PCC ²⁾	single-phase 161 milliohms two-phase none

Maximum efficiency	95,7 %
Euro. efficiency	95,1 %
Night consumption	0.36 W
Cooling	Controlled forced-air ventila- tion
Degree of protection	IP 54 in Australia, IP 44
Dimensions h x w x d	968 x 434 x 250 mm
Weight	36.9 kg
Permissible ambient temperature (with 95% rel. humidity)	- 20 °C - +55 ?
EMC emissions class	В
Over-voltage category (OVC)	AC 3 / DC 2
Safety equipment	

DC insulation measurement	Warning / Shutdown ⁴⁾ at R _{ISO} < 500 kilohms
DC over-voltage protection	integrated
Protection against reverse polarity	integrated
Manifestation of DC overload	Operating point shift

MPP voltage range	230 - 500 V DC
Max. input voltage (at 1000 W/m² / -10 °C in an open circuit)	600 V DC
Max. input current	37.1 A DC

Output data

Nominal output power (P _{nom})		8 kW
Max output power		8 kW
Nominal AC output voltage		1 ~ NPE 230 V 2 ~ NPE 400 / 230 V
Grid voltage tolerance		+10 / -15 % ¹⁾
Nominal output current	single-phase two-phase	34.8 A AC 17.4 A AC
Nominal frequency		50 - 60 Hz ¹⁾
Harmonic distortion		< 3 %
Power factor (cos phi)		1 0.85 - 1 ind./cap. ³⁾
Max. permitted grid impedance Zmax at $PCC^{2)}$	single-phase two-phase	131 milliohms 262 milliohms

General data

Maximum efficiency	95,7 %
Euro. efficiency	95,2 %
Night consumption	Single-phase 0.36 W two-phase 0.50 W
Cooling	Controlled forced-air ventila- tion
Degree of protection	IP 54
	in Australia, IP 44
Dimensions h x w x d	968 x 434 x 250 mm
Weight	36.9 kg
Permissible ambient temperature (with 95% rel. humidity)	- 20 °C - +55 ?
EMC emissions class	В
Over-voltage category (OVC)	AC 3 / DC 2

Safety equipment

DC insulation measurement	Warning / Shutdown ⁴⁾ at R _{ISO} < 500 kilohms
DC over-voltage protection	integrated
Protection against reverse polarity	integrated
Manifestation of DC overload	Operating point shift

Input data

MPP voltage range230 - 500 V DCMax. input voltage
(at 1000 W/m² / -10 °C in an open circuit)600 V DCMax. input current46.2 A DC

Output data

10 kW
10 kW
3 ~ NPE 400 / 230 V
+10 / -15 % ¹⁾
14.5 A AC
50 - 60 Hz ¹⁾
< 3,0 %
1
0.85 - 1 ind./cap. ³⁾
None

Maximum efficiency	95,9 %
Euro. efficiency	95,4 %
Night consumption	1.72 W
Cooling	Controlled forced-air ventila- tion
Degree of protection	IP 54 in Australia, IP 44
Dimensions h x w x d	1263 x 434 x 250 mm
Weight	49.2 kg
Permissible ambient temperature (with 95% rel. humidity)	- 20 °C - +55 ?
EMC emissions class	В
Over-voltage category (OVC)	AC 3 / DC 2
Safety equipment	

DC insulation measurement	Warning / Shutdown ⁴⁾ at R _{ISO} < 500 kilohms
DC over-voltage protection	integrated
Protection against reverse polarity	integrated
Manifestation of DC overload	Operating point shift

MPP voltage range	230 - 500 V DC
Max. input voltage (at 1000 W/m² / -10 °C in an open circuit)	600 V DC
Max. input current	55.6 A DC

Output data

12 kW
12 kW
3 ~ NPE 400 / 230 V
+10 / -15 % ¹⁾
17.4 A AC
50 - 60 Hz ¹⁾
< 3,0 %
1
0.85 - 1 ind./cap. ³⁾
None

General data

Maximum efficiency	95,9 %
Euro. efficiency	95,4 %
Night consumption	1.72 W
Cooling	Controlled forced-air ventila- tion
Degree of protection	IP 54 in Australia, IP 44
Dimensions h x w x d	1263 x 434 x 250 mm
Weight	49.2 kg
Permissible ambient temperature (with 95% rel. humidity)	- 20 °C - +55 ?
EMC emissions class	В
Over-voltage category (OVC)	AC 3 / DC 2

Safety equipment

DC insulation measurement	Warning / Shutdown ⁴⁾ at R _{ISO} < 500 kilohms
DC over-voltage protection	integrated
Protection against reverse polarity	integrated
Manifestation of DC overload	Operating point shift

Explanation of footnotes

- 1) The values provided are standard values. The inverter can be customized to the respective country according to the requirements.
- 2) PCC = interface to the public grid
- 3) Depending on the country setup or device-specific settings (ind. = inductive; cap. = capacitive)
- 4) Depending on the country setup

Relevant Standards and Directives

CE Conformity Marking	The equipment complies with all the requisite and relevant standards and directives that form part of the relevant EU directive, and therefore is permitted to display the CE mark.
Parallel Operation of In-Plant Power Generation Sys- tems	 The inverter complies with the "Guidelines for connection and parallel operation of in-plant generation systems with the low-voltage grid" published by the German Electricity Industry Association (VDEW) "Technical guidelines for parallel operation of in-plant generation systems with distribution networks" published by the Association of Austrian Electricity Companies.
Circuit to Prevent Islanding	The inverter has a circuit for preventing islanding which is approved by the Professional Association for Precision Mechanics and Electronic Engineering in accordance with DIN VDE 0126-1-1.
Grid Failure	The standard measurement and safety procedures integrated into the inverter ensure that the power feed is immediately interrupted in the event of a grid failure (shut-off by the utility or damage to lines).

Warranty and Disposal

Fronius Manufac- turer's Warranty	Fronius IG Plus inverters come standard with a manufacturer's warranty of 60 months from the date of installation. Fronius guarantees that your photovoltaic inverter will function correctly during this period.
Extended warran- ty	An extended warranty can be purchased up to 6 months after the date of installation. Applications for an extended warranty after this date can be rejected by Fronius. You can apply for an extended warranty of up to 10, 15 or 20 years for Fronius IG Plus inverters.
Services within the Warranty Peri- od	 If a defect should occur within the agreed upon warranty period for which Fronius is responsible, Fronius has the option of repairing the defect at Fronius or onsite providing an equivalent replacement device or new device having a trained Fronius Service Partner (FSP) carry out these services
Transport	 Fronius pays the transport costs for the inverter: in countries with a national Fronius subsidiary in countries of the EU in Switzerland between the respective national or nearest Fronius subsidiary and the retail site of the official Fronius sales partner from which the device was purchased. Transport costs are not paid: from or to EU overseas territories from or to countries outside of the EU provided that there are no national Fronius subsidiaries there (see point on "Geographic Validity"). For return transportation, devices or components must be packed in their original or equivalent packaging.
When making a warranty claim, attention should be paid to the fol- lowing	The following are required as proof of your warranty claim: purchase invoice, serial number of the device, and the commissioning log (transfer date, commissioning date, report from the power supply company). The procedure for a warranty claim must be coordinated with Fronius. This is the only way to ensure that the above mentioned warranty services will be provided free of charge for the warrantee. If the device is replaced, the remaining warranty time will be transferred to the replacement device. This will be registered automatically by Fronius. You will not receive a new certifi- cate.

Scope and Validi- ty of Manufactur- er's Warranty	The manufacturer's warranty is only valid for the inverter that is uniquely identified by the serial number. Other photovoltaic system components as well as Fronius system upgrades (e.g., plug-in cards) are not covered by the warranty.
Exceptions to the Fronius manufac- turer's warranty	 Defects are not covered by the manufacturer's warranty if they are caused by the following: Non-compliance with operating instructions, installation instructions and maintenance instructions Errors during device installation Errors during device commissioning Damage during device transport Improper or incorrect operation of the device Insufficient device ventilation Tampering with the device by personnel not trained by Fronius Non-compliance with safety instructions and installation standards Acts of God (storm, lightning strike, overvoltage, fire, etc.) This manufacturer's warranty also does not cover damages to the inverter that are attributed to the other system components as well as damages that do not adversely affect the proper functioning of the inverter, e.g., "cosmetic defects." The warranty does not cover travel and accommodation costs or assembly and installation costs onsite. Changes to the existing PV system, the building installation and the like, as well as any expenditure of time and the costs resulting from this are not covered by the warranty. Due to technological progress, the possibility exists that a replacement or new device of similar value provided may not be compatible with the system monitoring or other components installed onsite (e.g., Fronius DATCOM) Any charges or costs arising from this are not covered by the warranty. No compensation is provided for lost power that has not been fed into the grid or for energy consumption that does not take place and the like.
Geographical Va- lidity	 These warranty conditions are not valid for the United States of America (USA). As of September 2009, there are national Fronius subsidiaries in the following countries outside of the EU, Switzerland and the USA: Brazil Canada Mexico Norway Ukraine Current information about this can be found on our website at www.fronius.com.
Other Legal Infor- mation	Along with the Fronius manufacturer's warranty, there are also warranty rights stipulated by law that are not affected by this manufacturer's warranty. Claims that exceed those rights named in the warranty conditions are not covered by the manufacturer's warranty unless Fronius is legally liable for them. In such cases, please see your device vendor. Claims under the Product Liability Law remain unaffected.

The general terms and conditions located on our website (www.fronius.com) under "Legal info" are in effect unless these warranty conditions allow more favorable provisions. Previously valid warranty conditions are replaced by these conditions.

Disposal Should your inverter be replaced at some future date, Fronius will accept the obsolete equipment back and provide for its proper recycling.

B

Die Firma

EU-KONFORMITÄTSERKLÄRUNG 2011 EC-DECLARATION OF CONFORMITY 2011 DECLARATION DE CONFORMITE DE LA CE, 2011

Manufacturer

Wels-Thalheim, 2011-03-04

La compagnie

FRONIUS INTERNATIONAL GMBH Günter Fronius Straße 1, A-4600 Wels-Thalheim				
erklärt in alleiniger Verantwortung, dass folgendes Produkt:	Hereby certifies on its sole responsibility that the following product:	se déclare seule responsable du fai que le produit suivant:		
Fronius IG Plus 30V-1 / 35V-1	Fronius IG Plus 30V-1 / 35V-1	Fronius IG Plus 30V-1 / 35V-1		
/ 50V-1 / 70V-1 / 70V-2 /	/ 50V-1 / 70V-1 / 70V-2 /	/ 50V-1 / 70V-1 / 70V-2 /		
100V-1 / 100V-2 / 120V-3 /	100V-1 / 100V-2 / 120V-3 /	100V-1 / 100V-2 / 120V-3 /		
150V-3	150V-3	150V-3		
Solar-Wechselrichter	Photovoltaic inverter	Onduleur solaire		
auf das sich diese Erklärung	which is explicitly referred to by this	qui est l'objet de la présente		
bezieht, mit folgenden Richtlinien	Declaration meet the following	déclaration correspondent aux		
bzw. Normen übereinstimmt:	directives and standard(s):	suivantes directives et normes:		
Richtlinie 2006/95/EG	Directive 2006/95/EC	Directive 2006/95/CE		
Elektrische Betriebsmittel	Electrical Apparatus	Outillages électriques		
Niederspannungsrichtlinie	Low Voltage Directive	Directive de basse tension		
Richtlinie 2004/108/EG	Directive 2004/108/EC	Directive 2004/108/CE		
Elektromag. Verträglichkeit	Electromag. compatibility	Électromag. Compatibilité		
Europäische Normen inklusive	European Standards including	Normes européennes avec		
zutreffende Änderungen	relevant amendments	amendements correspondants		
IEC 62109-1:2010	IEC 62109-1:2010	IEC 62109-1:2010		
EN 50178:1997	EN 50178:1997	EN 50178:1997		
EN 61000-3-2:2006	EN 61000-3-2:2006	EN 61000-3-2:2006		
EN 61000-3-11:2000	EN 61000-3-11:2000	EN 61000-3-11:2000		
EN 61000-3-12:2005	EN 61000-3-12:2005	EN 61000-3-12:2005		
EN 61000-6-2:2005	EN 61000-6-2:2005	EN 61000-6-2:2005		
EN 61000-6-3:2007	EN 61000-6-3:2007	EN 61000-6-3:2007		

Die oben genannte Firma hält Dokumentationen als Nachweis der Erfüllung der Sicherheitsziele und die wesentlichen Schutzanforderungen zur Einsicht bereit.

(€ 2011

EN 50366:2003

Documentation evidencing conformity with the requirements of the Directives is kept available for inspection at the above Manufacturer.

EN 50366:2003

EN 61000-6-3:2007 EN 50366:2003

En tant que preuve de la satisfaction des demandes de sécurité la documentation peut être consultée chez la compagnie susmentionnée.

ppa. Mag.Ing.H.Hackl

8

Fachausschuss Elektrotechnik

Fachausschuss Elektrotechnik Gustav-Heinemann-Ufer 130

Erzeugnis:

Prüf- und Zertifizierungsstelle 50968 Köln

FRONIUS International GmbH Günter Fronius-Str.1 4600 Wels-Thalheim Austria

Ihr Zeichen: Ihre Nachricht vom: Unser Zeichen UB.010.17 Pl/wi (bitte stets angeben): Ansprechperson: Herr Pohl

Vorgang + C

E-Mail: pohl.wolfgang@bgete.d Datum: 10.11.2009

Unbedenklichkeitsbescheinigung 09017 (Prüfschein)

Selbsttätig wirkende Schaltstelle

ø Herren Pohl

Typ: IG Plus V Bestimmungsgemäße Selbsttätig wirkende, dem VNB unzugängliche Schaltstelle als Verwendung:

Sicherheitsschnittstelle zwischen einer Eigenerzeugungsanlage und dem Niederspannungsnetz. Gleichwertiger Ersatz für eine jederzeit dem VNB zugängliche Schaltstelle mit Trennfunktion. Die Schaltstelle ist integrierter Bestandteil der PV-Wechselrichter: Fronius IG Plus V

Prüfgrundlagen: "Selbsttätige Schaltstelle zwischen einer netzparallelen DIN V VDE V 0126-1-1: Erzeugungsanlage und dem öffentlichen Niederspannungsnetz" 2006-02

Das mit Prüfbericht 2.03.02013.1.0 vom 30.10.2009 arsenal research geprüfte Sicherheitskonzept des o.g. Erzeugnisses, entspricht den zum Zeitpunkt der Ausstellung dieser Bescheinigung geltenden sicherheitstechnischen Anforderungen für die aufgeführte bestimmungsgemäße Verwendung.

Die Unbedenklichkeitsbescheinigung gilt befristet bis:

Mehlem Leiter der Prüf- und Zertifizierungsstelle 31.12.2014

Document of Compliance 09017

Product:	Automatic switching center
Туре:	IG Plus V
Intended Use:	Automatic switching center inaccessible to the DSO as a safety interface between an in-plant generation system and the low-voltage grid. Also a backup for a switching center always accessible to the DSO with an isolation function. The switching center is an integral part of the PV inverter type: Fronius IG Plus V.
Test specification: DIN V VDE V 0126-1-1: 2006-02	"Automatic switching center between a parallel net generation system and the public low-voltage grid"
T () ()	

The safety concept of the above product tested with the report of 30.10.2009, ref. 2.03.02013.1.0 (arsenal research) corresponds to the safety requirements for the intended purpose valid at the time this certificate was issued.

This document of compliance is valid until:

31.12.2014

B

Fronius Worldwide - www.fronius.com/addresses

Fronius International GmbH A) 4600 Wels, Froniusplatz 1, Austria E-Mail: pv@fronius.com http://www.fronius.com

Fronius USA LLC Solar Electronics Division USA) 10421 Citation Drive, Suite 1100, Brighton, MI 48116 E-Mail: pv-us@fronius.com http://www.fronius-usa.com

Under http://www.fronius.com/addresses you will find all addresses of our sales branches and partner firms!